
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

Designing Then and Now

Rebecca J. Wirfs-Brock

Vol. 25, No. 6

November/December 2008

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E 	 November/December 2008 I E E E S o f t w a r E 	 29

Designing Then and now
Rebecca J. Wirfs-Brock

The changing of a vague diffi culty into a specifi c, concrete form is a very essential element in thinking.
 —John Pierpont Morgan

T
wenty-fi ve years ago I was programming
in 8086 assembly language for a low-cost
graphics terminal. Our team followed
structured-design practices. We developed
module decomposition diagrams and printed
them on an ozalid printer. Our software

blueprints really were blue! We wrote functional
specifi cations and defi ned the subroutine call struc-

ture before implementing any
code. We wrote and debugged our
coding sitting in a common work
area. We held code reviews and
shared effective coding practices.

On the graphics display sub-
system, where I was team lead,
we practiced collective code own-
ership. Anyone could implement
any routine; when you fi nished
one, you just picked up the next

on the list. We held a meeting the week before any
milestone to discuss tactics. After each milestone,
we met to discuss how to make our next iteration
successful. Our product-marketing manager main-
tained a list of features. Anything above the cut
line was essential; anything below, a nice-to-have.
There’s a striking similarity between the rhythms of
our work then and today’s Scrum practices. Incre-
mental, steady delivery seems to require close team-
work, frequent planning, and attention to detail and
design quality.

Changes in Technologies
Since my assembly programming days, technology
changes have been dramatic. When I fi rst started

programming in Smalltalk in the mid-1980s, I
experienced the sheer joy of writing code where I
asked objects to do something without having to
know how they specifi cally performed their tasks.
Finally, I didn’t have to keep a myriad of little
details in my head while programming. The key
for me grasping the power of this new way of de-
signing was the realization that objects’ responsi-
bilities (but not their implementations) interacted.
Extremely productive Smalltalk designers didn’t
decompose problems so much as craft networks of
responsible, interacting objects.

In Smalltalk, we wrote and immediately ex-
ecuted code, getting nearly instant feedback. The
development environment had a wealth of reusable
classes and a browser to locate and organize them.
The standard fare of today’s development environ-
ments was a big deal back then. In Smalltalk, the
entire code base was accessible. That openness en-
abled us to learn by reading and emulating work-
ing examples. New Smalltalk developers spent a
lot of time browsing code.

The distinction between application code and
stable class libraries wasn’t clearly demarcated. If
you didn’t like the implementation of any Small-
talk class, you could change it. This was great for
rapid programming but sometimes led to applica-
tion-specifi c behaviors being added to the most bi-
zarre places. I developed a design sense by seeing
both good and bad code.

Since those open Smalltalk days, however,
I’ve grumbled at poorly designed code that was
unchangeable and ugly. Stable class libraries al-
low developers to use them with confi dence, but

E d i t o r : R e b e c c a J . W i r f s - B r o c k ■ W i r f s - B r o c k A s s o c i a t e s ■ r e b e c c a @ w i r f s - b r o c k . c o m

design

30	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Design

stability comes at a price. Widely distributed class
libraries are difficult to improve without breaking
working code. Even if we design to an interface,
not an implementation, we’re still confounded
when interfaces change. That’s why today many
developers lag behind in adopting the latest ver-
sions and migrate to a new release only after it has
proven stable.

Although object technology has had a big im-
pact on software development, it isn’t the only tool
in a well-rounded toolkit. Grady Booch’s thoughts
on design choice (“Why We Model,” Object Mag-
azine, Nov. 1996) bear repeating:

In software, what models we choose to make
greatly affects our world view. If I build a
system through the eyes of a database de-
veloper, I’ll end up with an entity-oriented
schema that pushes behaviors into triggers
and stored procedures. If I build a system
through the eyes of a structured analyst, then
I’ll end up with a system that’s algorithmic-
centric, with data flowing from process to
process. If I build a system through the eyes
of an object-oriented developer, then I’ll
end up with a system whose architecture
is centered around a sea of classes and the
patterns of interaction that animate those
classes. Any one of these might be right for a
given application and a given development
culture.

Our technology choices today are wide and
varied. Most complex systems involve a mix of
technologies. We have a wealth of competing ar-
chitectural platforms. Experienced designers must
make trade-offs and select from a variety of appro-
priate technologies for solving the task at hand.

Larry Constantine, coinventor of Structured
Design, observes that

change (and fads) are going to continue. And
although Structured Design might not be on
the forefront of many people’s design prac-
tices these days, the principles and practices
that are “best practices” in object design
these days exemplify the values of Structured
Design—avoiding unnecessary coupling and
forming highly cohesive objects.

Moving to newer technologies means not that we
ignore our past but that we adapt and embrace
practices that enable our software to flex, grow, be
expressive, and meet users’ needs.

Bob Martin reflects that, although tools and
technology have rapidly changed, programming re-
mains largely the same:

But in the face of all this massive change,
this rampant growth, this almost unlimited
wealth of resources, there is something that
hasn’t changed much at all: code. Today’s
modern programming languages may be rich
with features and power, but they are not or-
ders of magnitude better than their ancestors.
We still write programs made out of calcula-
tions, “if” statements, and “for” loops. We
still assign values into variables and pass ar-
guments into functions. Programmers from
twenty-five years ago might be surprised that
we use lowercase letters in our programs, but
little else would startle them about the code
we write. We are like carpenters who started
out using hammers and saws, and have pro-
gressed to using air hammers and power
saws. These power tools help a lot; but in
the end we are still cutting wood and nailing
it together. And we probably will be for the
next twenty-five years.

Changes in the Thinking-
Designing-Coding Cycle
Twenty-five years ago, I spent a fair amount of
time thinking about and sketching solutions
before I coded them. This was essential when
programming in assembly language or when I
could squeeze only one or two programming
cycles into each day owing to lengthy compile-
link-execute times. That lag time—and the dis-
connect between design ideas and their pro-
gram representation—magnified the need to
desk-check my work.

Today’s power tools enable us to cut code
and test our design ideas much more quickly.
This is a significant improvement. Yet the more
code we create, the more opportunity we have
for it to grow unwieldy, inconsistent, and un-
maintainable. Unless we want our code base
to grow into a Big Ball of Mud (Brian Foote
and Joseph Yoder, “Big Ball of Mud,” Proc.
4th Conf. Pattern Languages of Programs,
1997), it requires care and attention. With fre-
quent design-test-code cycles, we can rapidly
validate design ideas. These cycles also reduce
chances to create large tangles of untested, un-
testable code. That’s one reason proponents
of test-driven development (TDD) are gaining
traction. TDD advocates propose it as a design
method, not just a testing practice.

But whether you adopt TDD—writing tests
before you implement code—as a design prac-
tice, attention to code quality and design main-
tenance is ever important. Ward Cunningham
coined the term “technical debt” to explain
how we should manage this effort:

Today’s power
tools enable

us to cut code
and test our
design ideas
much more
quickly. This

is a significant
improvement.

	 November/December 2008 I E E E S o f t w a r e � 31

Design

I have always promoted writing excellent
code, not cruft [unpleasantly built-up code].
I am happy to see code that solves today’s
problems, not imaginary problems that
might appear in the future. As time advanc-
es, once excellent code shows its limitations
and requires attention. I argue that the
required work can be scheduled as part of
a management policy, much like funding a
company includes managing financial debt.
In fact, well-managed debt serves as an ac-
celerator. Part of that management includes
paying back principal. A design that grace-
fully accepts refactoring will prove more
valuable than big design up front.

We can continue to grow and evolve a large
code base only when we pay attention to technical
debt. The challenge is choosing an opportune time
to pay off that debt. We need to know enough
about our design’s current limitations and chal-
lenges but not be inundated with so much debt
that any rework appears daunting. Best design ef-
forts rarely happen when we feel hurried, pinched
by project schedules, or overwhelmed by the task’s
sheer magnitude.

Changes in Design Expression
When I programmed in assembly language, I
didn’t put much thought into how I expressed my
design in code. I followed naming schemes and
established conventions. But I remember being in-
trigued by Donald Knuth’s literate programming.
The central ideas behind literate programming
are human readability and code comprehension.
This approach combines explanatory documen-
tation and source code so that they don’t get out
of synch.

We still live with that problem, and we don’t
write literate programs. I suspect that’s because
we aren’t comfortable writing prose about our
code. Instead, we hope it will be comprehended
on its own (with judiciously placed code com-
ments). Yet, the combination of code as prose
and prose about the code is what adds value.
Those who advocate intention-revealing names
and expressive code echo these values, but they
don’t go far enough.

Code alone isn’t abstract enough to convey
design ideas to others because it’s too easy to get
lost in its nonessential details. So, we’ve always
informally drawn and told stories about our soft-
ware, in spite of any modeling tool or expressive
programming language.

Although the Unified Modeling Language
(UML) consolidated many different design con-
cepts, most designers I rub shoulders with aren’t

fluent in it. They know rudimentary class and se-
quence diagrams but don’t see the merit in learn-
ing any of its sophisticated nuances. They typi-
cally use UML to describe their software after
they have constructed it, not to formulate its de-
sign. Even with advances in modeling tools, pro-
gramming languages, and design practices, we’re
still exploring how best to express our designs.
The “best” approach depends on design context
as well as our collaborators’ interests, inclina-
tions, and skills.

O ver the past 25 years, we’ve made great ad-
vances in tooling, technologies, and tech-
niques that make software design more con-

crete. But design still requires careful thought.
We still must exercise judgment. There isn’t one
simple way to think about and describe soft-
ware. Informal design tools and techniques com-
plement more formal ones. New techniques and
design approaches will come along. And respon-
sible designers will keep learning and improving
their craft.

Acknowledgments
The quotes from Larry Constantine, Bob Martin, and
Ward Cunningham are from personal conversations
and emails. I thank them for pro-
viding these important insights.

Rebecca J. Wirfs-Brock is president of
Wirfs-Brock Associates. Contact her at rebecca@
wirfs-brock.com; www.wirfs-brock.com.

GAME CHARACTER SOFTWARE ENGI-
NEER, MS in Computer or Software
Engineering, 1 yr exp. Send resume to
Arcadia Entertainment, Inc., 900 Island
Drive, Suite 203, Redwood City, CA
94065.

◆◆◆

DISTRIBUTED MMO SERVER DEVEL-
OPER , MS in Computer or Electrical
Engineering, 1 yr exp. Send resume to
Arcadia Entertainment, Inc., 900 Island
Drive, Suite 203, Redwood City, CA
94065.

Classified Advertising

SUBMISSION DETAILS: Rates are
$110.00 per column inch ($125 mini-
mum). Eight lines per column inch
and average five typeset words per
line. Send copy at least one month
prior to publication date to: Marian
Anderson, Classified Advertising,
IEEE Software, 10662 Los Vaqueros
Circle, Los Alamitos, CA 90720-1314;
(714) 821-8380; fax (714) 821-4010.
Email: manderson@comput er.org.

Become a reviewer for

The key to providing you
quality information you can
trust is IEEE Software’s peer
review process. Each article
we publish must meet the
technical and editorial
standards of industry
professionals like you.
Volunteer as a reviewer and
become part of the process.

Email
software@computer.org

