
	
	

Elephants, Patterns, and Heuristics					Page	-	1	

Elephants,	Patterns,	and	Heuristics	
REBECCA	WIRFS-BROCK,	Wirfs-Brock	Associates	
CHRISTIAN	KOHLS,	TH	Köln	

Capturing	the	wholeness	of	design	solutions	in	order	to	effectively	communicate	them	to	others	can	be	challenging.	We	posit	that	patterns	
are	observable	phenomena	of	design	solutions.	To	represent	these	phenomena,	a	pattern	author	needs	to	generalize	and	omit	information.	
Experienced	designers	are	able	to	unfold	the	essence	of	the	pattern	and	generate	design	solutions	based	on	the	information	that	they	do	
find	in	a	pattern	description.	Not	surprisingly,	their	personal	design	heuristics	play	a	central	role	in	this.	As	they	create	a	design	solution,	
they	also	liberally	apply	their	pre-existing	design	know-how	and	heuristics.	But	novice	designers	may	have	more	difficulty.	As	this	folding	
and	 unfolding	 of	 information	 and	 knowledge	 seems	 to	 be	 quite	 an	 abstract	 concept,	we	 have	 chosen	 to	make	 our	 point	 by	 discussing	
elephants.	Like	patterns,	elephants	are	an	observable	phenomenon,	a	pattern	in	nature.	Many	different	descriptions,	representations,	and	
accounts	of	elephants	exist.	Many	people	claim	to	know	what	elephants	are.	Yet	they	actually	have	little	or	limited	knowledge	of	them.	This	
analogy	helps	to	understand	how	at	the	same	time	we	both	know	and	do	not	know	what	a	thing	is.	

Categories	 and	 Subject	 Descriptors:	 •	Software	 and	 its	 engineering~Software	 design	 engineering	 		 •	Software	 and	 its	
engineering~Software	design	tradeoffs			•	Software	and	its	engineering~Design	patterns	

ACM	Reference	Format:	

Wirfs-Brock,	R.	and	Kohls,	C.	Elephants,	Patterns,	and	Heuristics	26th	Conference	on	Pattern	Languages	of	Programming	(PLoP),	PLoP	2019,	
Oct	7-10	2019,	15	pages.	

1. INTRODUCTION	

Patterns	 are	 recurrent	 phenomena	 that	 can	 be	 found	 in	 all	 design	 domains.	 We	 can	 directly	 observe	 and	
experience	 these	 phenomena	 both	 as	 designers	 and	 users	 of	 those	 designs.	 However,	 it	 can	 be	 deceptively	
difficult	to	explain,	generalize,	and	understand	the	salient	aspects	of	these	phenomena.	The	literature	genre	of	
pattern	descriptions	presents	some	form	of	a	solution	and	explains	other	relevant	information.	To	understand	
why	a	particular	solution	to	a	particular	problem	is	reasonable,	an	explanation	of	the	context	where	the	pattern	
has	been	observed	is	described.	Additionally,	some	understanding	of	the	most	critical	factors	that	might	drive	a	
designer	 both	 towards	 and	 away	 from	a	 particular	 pattern	 as	well	 as	 potential	 consequences	 adds	 valuable	
perspective.	This	holistic	analysis	commonly	found	in	pattern	descriptions	is	based	on	Christopher	Alexander’s	
design	theory	as	outlined	in	A	Pattern	Language	[AISJFA]	and	The	Timeless	Way	of	Building	[Alex].	

Surprisingly,	 little	 discussion	 has	 taken	 place	 about	 the	 challenges	 pattern	writers	 and	 researchers	 face	
when	 they	 try	 to	 preserve	 the	wholeness	 of	 observed	 solution	 phenomena	 in	written	 pattern	 descriptions.	
Since	 every	 pattern	 is	 a	 generalization,	 by	 necessity	 some	 details	must	 be	 skipped.	 Pattern	writers	 have	 to	
present	what	 they	 consider	 the	most	 significant	 information	 and	 insights	 in	 a	way	 that	 is	 helpful	 to	 others.		
Other	designers	need	to	be	able	to	unfold	their	unique	solutions	based	on	both	these	pattern	descriptions	and	
an	understanding	of	 their	own	design	context	and	constraints.	Each	design	situation	 is	different.	To	unfold	a	
specific	 solution	 from	 a	 general	 description	 requires	 tacit	 knowledge,	 experience,	 and	 the	 ability	 to	make	 a	
series	of	tactical	design	decisions	to	achieve	a	satisfactory	implementation.	

The	level	of	detail	provided	by	any	pattern	description	often	depends	on	the	target	audience	it	was	written	
for.	Experts	have	a	huge	set	of	personal	design	experience	and	a	wealth	of	heuristics	they	have	internalized	to	
draw	upon.	Patterns	are	just	a	small	part	of	a	much	larger	body	of	an	expert’s	design	know-how.	Consequently,	
they	 are	 capable	 of	 unfolding	 new	 solutions	 from	 very	 general	 descriptions.	 Novices,	 on	 the	 other	 hand,	
typically	need	more	guidance.	Thus,	pattern	descriptions	written	for	them	tend	to	be	very	specific	–	up	to	an	
extent	where	they	describe	example	solutions	rather	than	more	loosely	constrained,	generative	patterns.	

The	 information	we	have	at	hand	or	 in	our	heads	as	designers	 in	addition	to	the	 information	provided	 in	
pattern	descriptions	are	therefore	critical	factors.	
__
Permission	to	make	digital	or	hard	copies	of	all	or	part	of	 this	work	for	personal	or	classroom	use	 is	granted	without	 fee	provided	that	
copies	are	not	made	or	distributed	for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	and	the	full	citation	on	the	first	page.	
To	copy	otherwise,	to	republish,	to	post	on	servers	or	to	redistribute	to	lists,	requires	prior	specific	permission.	A	preliminary	version	of	
this	paper	was	presented	in	a	writers'	workshop	at	the	26th	Conference	on	Pattern	Languages	of	Programs	(PLoP).	PLoP'19,	OCTOBER	7-
10,	Ottawa,	Ontario	Canada.	Copyright	2019	is	held	by	the	authors.	HILLSIDE	978-1-941652-14-5	
	

	
	

Elephants, Patterns, and Heuristics					Page	-	2	

And	this	is	where	elephants	enter	the	stage.	Like	patterns,	elephants	are	phenomena	in	the	world.	We	can	
observe	them,	we	can	think	we	know	a	good	deal	about	them,	and	there	are	many	different	ways	to	describe	
and	 represent	 elephants.	 Yet	 there	 are	 many	 misunderstandings,	 misconceptions,	 and	 missing	 information	
about	elephants!		

If	we	understand	the	challenges	in	capturing,	communicating	and	using	knowledge	about	elephants,	we	can	
gain	insights	into	how	to	better	capture	and	share	software	design	patterns	and	heuristics.	Because	elephants	
are	a	pattern	in	nature.	And	everything	we	can	say	about	the	science	of	elephants,	we	can	say	about	research	
into	software	design	patterns	and	heuristics.	Thus,	in	this	paper	we	want	to	talk	a	lot	about	elephants.	

2. ELEPHANTS	ARE	UNDER	STRESS	

“Elephant	populations	in	India	and	also	in	the	whole	of	Asia	are	under	severe	stress.	The	captive	ones	are	rendered	
jobless	due	to	changes	in	the	mode	of	transport	and	lifestyle	of	people.	The	ones	in	the	wild	are	also	no	better	off,	
as	the	forests	are	shrinking.”	—Mark	Shand	
	
Are	software	patterns,	too,	under	stress?	

Most	likely.	
While	 captive,	 written	 software	 patterns	 initially	 proved	 useful	 to	 software	 developers,	 over	 time	 early	

software	 patterns	 either	 have	 been	 rendered	 irrelevant	 due	 to	 changes	 in	 technology	 and	 in	 the	 ways	 we	
design	 and	 build	 software	 or	 have	 become	 lost	 and	 mostly	 forgotten.	 While	 people	 may	 on	 occasion	 find	
software	design	patterns	in	online	sources	or	be	exposed	to	the	idea	of	software	design	patterns	at	school,	they	
tend	to	find	design	advice	in	other	places.	Most	developers	don’t	expect	to	read	books	on	patterns	to	learn	how	
to	design	software.	They	expect,	instead,	to	learn	from	their	experiences	and	their	peers,	supplemented	by	any	
online	advice	they	may	find.	

Patterns	written	in	the	wild	(those	software	patterns	which	have	not	been	extensively	reviewed	at	patterns	
writing	 conferences)	 tend	 to	 describe	 design	 solutions	 based	 on	 the	 latest	 software	 technologies	 or	
development	practices.	Information	about	a	particular	design	topic	can	be	scattered	or	contradictory,	making	it	
difficult	to	distinguish	the	important	bits	from	the	inconsequential.		Other	 advice	 of	 varying	 quality	 can	 be	
found	in	blog	posts	and	Stack	Overflow	replies,	online	courses,	videos,	and	conference	talks.	

For	example,	while	much	has	been	written	about	the	design	of	microservice	architectures,	only	a	fraction	of	
this	advice	has	been	written	in	pattern	form.	The	microservice	pattern	language	written	by	Chris	Richardson	
[Rich]	 in	 book	 form	 is	 also	 supported	 by	 a	 website	 (see	 www.microservices.io)	 that	 includes	 community	
discussion	forums.	

Another	 notable	 exception	 to	 pattern	 distress	 is	 the	 Domain-Driven	 Design	 [Evan]	 patterns.	 The	 initial	
patterns	written	by	Eric	Evans	have	been	embraced	and	extended	by	a	 small,	 vibrant	domain-driven	design	
community.	The	building	block	patterns	in	Evans’	book,	e.g.	the	tactical	object-oriented	domain-driven	design	
patterns,	have	been	de-emphasized	as	the	community	thought	leaders	have	turned	their	attention	to	the	design	
of	functional	programming	solutions	and	event-sourced	architectures.	However	emphasis	is	still	placed	on	the	
original	 “strategic”	 patterns	 for	 identifying	 larger	 structures	 and	 distilling	 core	 and	 generic	 sub-domains.	
Several	 authors	 in	 the	 domain-driven	 design	 community	 have	 refreshed	 the	 original	 design	 patterns	 with	
heuristics	 for	 identifying	 domain	 events	 [Bran],	 applying	 domain-driven	 design	 constructs	 to	 functional	
programming	 language	 implementations	 [Wlas],	 and	 designing	 event-sourced	 architectures	 [Youn].	 Their	
focus	has	not	been	on	writing	their	advice	in	pattern	form	so	much	as	it	has	been	on	effectively	communicating	
their	current	understanding	and	design	practices.	

While	 these	 efforts	 are	 notable,	 most	 patterns	 may	 be	 no	 better	 off	 than	 our	 community’s	 carefully	
shepherded,	tame	patterns.	Many	“tame”	and	“wild”	patterns	are	not	sustained	in	a	way	that	allows	for	their	
continued	use,	growth,	and	evolution	based	on	feedback	from	a	community	of	users.		

3. CHALLENGES	TO	SHARING	KNOWLEDGE

Ask	different	people	“What	is	an	elephant?”	and	they	will	give	you	different	descriptions	–	yet	all	these	descriptions	
are	based	on	the	same	animals	we	label	as	elephants.	You	can	describe	an	elephant	with	a	few	words,	a	sentence,	a	
paragraph,	 a	 full	 page,	 or	 even	 in	 a	 book.	 The	 German	 Wikipedia	 article	 has	 50,000	 characters;	 the	 English	
Wikipedia	 article	 has	 100,000	 characters.	 Yet	 both	 articles	 write	 about	 the	 same	 phenomenon.	 And	 there	 are	
books	about	elephants	that	number	in	the	several	hundreds	of	pages.	

	
	

Elephants, Patterns, and Heuristics					Page	-	3	

	
Patterns	and	elephants	share	a	lot	in	common.	In	fact,	elephants	are	natural	instances	of	patterns	in	our	world.	
Each	specific	elephant	exemplifies	the	general	pattern	of	ELEPHANT.	However,	even	for	such	a	common	category	
there	are	a	lot	of	challenges	to	conveying	a	sound	picture	of	what	elephants	are	and	how	to	treat	them.	

If	 we	 want	 to	 share	 our	 expertise,	 we	 need	 to	 communicate	 explicit	 knowledge	 about	 a	 particular	
phenomenon	in	some	way.	

We	all	think	we	know	what	an	elephant	is.	But	can	we	describe	in	a	few	words	the	nature	of	an	elephant?	If	
we	 face	 such	 challenges	 for	 elephants,	 how	 can	we	 believe	 that	 sharing	 knowledge	 for	 the	 dynamic	 field	 of	
software	development	is	any	easier?		

Likewise,	a	software	pattern	can	be	described	on	a	single	page—sometimes	even	a	single	index	card—or	on	
several	pages.	And,	in	the	case	of	software	patterns,	not	only	are	pattern	authors	challenged	to	simply	describe	
the	observed	phenomenon;	 they	 also	 attempt	 to	describe	how	 to	 create	 a	 reasonable	 representation	of	 that	
phenomenon,	e.g.	a	stylized	or	exemplary	design	for	that	software	pattern.	

It	 is	 uncommon,	however,	 to	 find	books	 that	describe	 a	 single	pattern.	 For	 some	 social	 patterns,	 such	 as	
pedagogical	patterns,	sometimes	there	are	books	that	discuss	one	pattern	in	length.	For	example,	the	pattern	of	
a	learning	portfolio	or	the	patterns	of	brainstorming	have	been	described	in	typical	pattern	style	as	well	as	in	
dedicated	books	[Koh14].	

Even	if	you	do	go	into	lengthy	detail,	each	description	of	elephants	is	incomplete.	One	reason	for	this	is	that	
in	addition	to	explicit	 information	there	are	many	implicit	structures	that	are	difficult	to	understand	without	
seeing,	or	sensing	on	multiple	channels	an	actual	elephant.	

Most	descriptions	of	elephants	are	supported	by	visual	representations.	An	image	implicitly	shows	details	
that	verbal	descriptions	can	only	explain	 in	a	roundabout	way.	For	example,	 the	spatial	relationship	of	nose,	
eyes,	ivory	tusks,	are	shown	as	well	as	their	relative	sizes.	

If	we	 see	 a	 photograph	 of	 an	 elephant	 that	 represents	 the	 species	 of	 elephants	 in	 general,	 do	we	 see	 an	
example	of	 an	elephant	or	do	we	 see	 the	pattern	of	 elephants?	The	answer	 is	both.	Obviously	a	photograph	
depicts	a	specific	exemplar	of	an	elephant,	an	exemplification	of	the	general	pattern.	However,	we	also	see	the	
pattern	itself.	A	pattern	manifests	itself	in	each	of	its	instances.	Each	instance	shows	the	pattern.		

Sometimes	it	is	hard	to	discriminate	this	pattern	because	things	in	the	real	world	are	often	manifestations	
of	many	overlapping	patterns.	Consequently,	 it	 can	be	difficult	 to	distinguish	 the	 essence	of	 the	pattern	and	
untangle	it	from	the	surrounding	context.	

For	example,	what	is	an	elephant’s	skin	color?	
Asian	elephants	tend	to	have	more	mottled	coloring,	with	skin	tone	ranging	from	dark	grey	to	brown,	with	

patches	of	pink	on	the	forehead,	ears,	base	of	the	trunk	and	chest	[WWF].	
African	 elephants	 typically	 have	 grayish	 skin:	 “The	 natural	 color	 of	 the	 skin	 is	 greyish	 black	 in	 both	 the	

African	and	the	Asian	elephant.	To	the	observer	of	the	elephant,	the	apparent	color	of	the	skin	is	determined	by	
the	color	of	the	area’s	soil.	This	is	due	to	the	elephant’s	habit	of	throwing	mud	over	its	back	“	[EIR].	

So	what	color	are	elephants?	It	depends	on	their	context,	their	locale,	and	the	color	of	any	overlapping	mud	
on	their	backs.	

In	software	implementations,	we	often	see	classes	that	participate	in	different	patterns	with	different	roles	
in	each	of	these	patterns	[BHS].	Pattern	descriptions,	however,	 focus	on	describing	one	particular	pattern.	In	
these	 descriptions	 the	 essential	 structure	 of	 a	 single	 pattern	 is	 isolated	 and	 an	 abstract	 representation	 is	
chosen.	

Instead	of	showing	a	specific	exemplar	of	an	elephant,	we	could	show	a	line	drawing	of	an	elephant.	Unique	
features	of	a	specific	exemplar,	such	as	shades	of	skin	color	or	variation	in	ear	size,	may	be	left	out	in	such	an	
abstract	 representation.	 If	we	can	clearly	perceive	an	elephant,	we	have	preserved	 its	essential	 structure.	 In	
this	case,	the	abstract	representation	still	manifests	the	pattern.	Of	course,	the	drawing	is	not	an	elephant	itself,	
but	photographs	are	also	not	the	elephant.	

Representations	 that	are	 too	abstract,	however,	do	not	depict	 the	pattern	anymore:	 if	 you	draw	a	box	 to	
represent	an	elephant,	then	the	pattern	is	no	longer	discernible.	If	you	think	to	label	that	box,	“Elephant,”	then	
you	 are	 introducing	 an	 even	 more	 abstract	 way	 to	 represent	 an	 elephant;	 one	 without	 an	 obvious	
correspondence	to	its	physical	manifestation.	

	
	

Elephants, Patterns, and Heuristics					Page	-	4	

An	alternative	to	abstraction	is	to	use	a	model.	A	model	is	a	good	and	valid	instance	that	does	not	obfuscate	
the	core	structure	or	the	essence	of	a	pattern	[Good].	For	example,	to	represent	an	elephant,	a	picture	(or	3D	
model)	should	show	an	archetypical	exemplar	of	an	elephant.		

Likewise,	the	class	diagrams	that	document	software	patterns	are	models	rather	than	abstractions,	because	
the	more	 universal	 structure	 of	 the	 pattern	 is	manifested	 in	 the	 concrete	 class	 diagram	of	 that	 pattern.	 For	
example,	 the	 class	 diagram	of	 the	OBSERVER	 pattern	 has	 the	 same	 structural	 quality	 as	 a	 class	 diagram	of	 an	
actual	 implementation;	 the	 details	 change—such	 as	 method	 names,	 parameter	 types,	 number	 of	 methods	
etc.—but	 the	 core	 structure	 is	 preserved.	 The	 interactions	 between	 the	 pattern	 elements	 are	 also	 universal	
between	all	instances	of	a	proper	OBSERVER.	

And	if	the	context	is	software	design,	creating	a	box	and	labeling	it	“Elephant”	in	a	class	diagram	should	not	
be	 confused	 with	 an	 abstraction	 of	 a	 physical	 elephant.	 	 Instead	 it	 should	 rightfully	 be	 interpreted	 as	 a	
representation	of	a	 software	design	element,	perhaps	with	some	correspondence	 to	a	physical	elephant,	but	
perhaps	not.	That	label,	“Elephant”	has	to	be	interpreted	in	the	context	of	the	design	it	is	part	of.		

4. OUR	PERCEPTIONS	OF	PHEONOMENA	

Rudolph	 Arnheim,	 in	 Visual	 Thinking	 [Arn],	 explains	 three	 different	 attitudes	 or	 stances	 we	 take	 towards	
perceiving	objects.	These	perceptual	 attitudes	 apply	 equally	well	 to	 seeing	 elephants	 and	 software	patterns.	
We	 label	 these	 ways	 of	 perceiving	 “contextually	 muddled,”	 “contextually	 isolated,”	 and	 “contextually	
integrated.”	

A	contextually	muddled	perception	happens	when	an	observer	“perceives	the	contribution	of	the	context	as	
an	attribute	of	the	object	itself.	…[The	observer]	sees,	more	or	less,	what	a	photographic	camera	records,	either	
because	he	stares	restrictively	and	unintelligently	at	a	particular	target	or	because	he	makes	a	deliberate	effort	
to	 ignore	 the	 context	 and	 to	 concentrate	 on	 the	 local	 effect.”	 [Arn]	When	 the	 context	 changes,	 the	 object	 is	
observed	as	changing	its	character	as	well.	

For	example,	we	might	observe	a	photograph	of	an	elephant	in	a	grassy	savannah	and	that	same	elephant	
photographed	standing	underneath	some	trees.	In	the	second	photograph,	the	elephant	is	partially	obscured	by	
the	shadows	underneath	the	trees.	Is	the	elephant	now	a	darker	color?	To	a	naïve	viewer	with	a	contextually	
muddled	perspective,	 an	elephant’s	 color	would	be	perceived	 to	 change	with	a	 change	 in	 the	 landscape.	But	
since	 we	 are	 a	 bit	 more	 sophisticated,	 and	 haven’t	 heard	 tales	 about	 elephants	 that	 change	 their	 color	 so	
quickly,	we’d	answer:	probably	not.	But	that’s	based	on	our	understanding	of	mammals	 in	general,	and	their	
inability	to	rapidly	change	color.	

Unfortunately,	 the	essential	nature	of	a	software	pattern	can	easily	become	much	more	muddled	with	 its	
implementation	 context.	 What	 is	 it	 exactly	 that	 makes	 an	 OBSERVER	 an	 OBSERVER?	 In	 an	 implementation	 of	
OBSERVER	there	are	two	clearly	distinguished	roles	that	interact	(the	Observer	and	the	Subject).	If	we	implement	
the	OBSERVER	 pattern	 in	 a	 programming	 language	 that	 supports	 the	 definition	 of	 Interfaces,	 we	 are	 likely	 to	
define	 Interfaces	 that	 are	 implemented	 by	Observer	 and	 Subject	 roles.	 On	 the	 other	 hand,	 if	we	 look	 to	 the	
original	 description	 of	 OBSERVER	 in	 the	 classic	 Design	 Patterns	 book	 [Gamma],	 we	 might	 conclude	 that	 any	
Observer	 is	 a	 subclass	 of	 an	 Observer	 class	 and	 the	 Subject	 must	 be	 a	 subclass	 of	 a	 Subject	 class.	 We’ve	
muddled	the	implementation	details	(e.g.	the	use	of	classes)	with	the	essential	behavior	of	Observer.	

In	the	second	way	of	perceiving—a	contextually	isolated	view—the	influence	of	the	context	is	purposefully	
“peeled	off	in	order	to	observe	the	object	in	its	pure,	unimpaired	state.”	[Arn]	The	resulting	object	is	constant,	
except	for	whatever	changes	the	object	initiates	itself.	Arnheim	calls	this	a	scientific	way	of	viewing	that	“seeks	
to	establish	 the	nature	of	any	phenomenon	 in	 itself	 in	order	 to	distinguish	 it	 in	each	practical	 case	 from	the	
conditions	surrounding	it.”		

Perhaps,	to	get	a	contextually	isolated	perception	of	an	elephant’s	coloring,	we	should	scrub	it	clean	of	all	
dirt	and	mud	and	photograph	it	under	bright	light.	But	still	we	wouldn’t	get	an	accurate	perception.	

Most	photographs	of	elephants	 show	 the	 front	of	elephant.	But	what	about	 the	back?	What	about	a	view	
from	the	top	or	bottom?	We	could	observe	an	elephant	photographed	from	different	angles,	removing	it	from	
its	 context,	 and	 thus	piece	 together	 a	more	 complete,	 yet	 isolated,	depiction	of	 that	 elephant.	 Is	 that	better?	
Perhaps.	But	it	is	still	incomplete.	

Software	design	pattern	solutions	are	commonly	presented	as	contextually	isolated.	We	see	a	static	view	of	
the	structure	of	the	solution	in	a	class	diagram.	And	sometimes,	if	the	interactions	between	pattern	elements	
are	of	interest,	we	are	shown	a	dynamic	view	of	those	objects	of	the	pattern	interacting	in	a	stylized	sequence	

	
	

Elephants, Patterns, and Heuristics					Page	-	5	

diagram.	Even	though	a	slightly	richer	context	where	the	pattern	might	be	applied	may	have	previously	been	
explained	 in	 text,	 the	solution	 itself	 is	 contextually	 isolated.	We	don’t	observe	 the	solution	embedded	 in	any	
rich	or	realistic	software	context.		

Joshua	Kerievsky,	in	Refactoring	to	Patterns	[Ker],	talks	about	refactoring	moves	that	either	are	towards	or	
away	 from	 exemplary	 design	 pattern	 solutions.	 Joshua	 describes	 specific	 refactoring	 moves	 that	 turn	 an	
exemplary	solution	into	slightly	different	forms.	To	perceive	software	patterns	in	the	wild	we	need	to	be	able	
to	accurately	spot	 them.	The	closer	a	pattern	 is	 to	 its	exemplary	description	 the	easier	 it	 is	 to	spot.	But	 that	
exemplary	solution	isn’t	likely	to	be	a	reasonable	design	solution.	Pattern	solutions	are	always	adapted	to	the	
current	design	context.	The	difficulty	in	perceiving	a	pattern,	then,	arises	when	a	pattern	changes	form	based	
on	an	unfamiliar-to-us	context—we’re	simply	not	conditioned	to	perceiving	it	that	way.	

A	contextually	integrated	perception,	according	to	Arnheim,	does	not	attempt	to	eliminate	the	effect	of	the	
setting	 on	 the	 object.	 Instead	 it	 fully	 “appreciates	 and	 enjoys	 the	 infinite	 and	 often	 profound	 and	 puzzling	
changes	 the	 object	 undergoes	 as	 it	 moves	 from	 situation	 to	 situation.”	 Arnheim	 further	 claims	 that,	 “the	
enlightenment	one	gains	from	such	varying	exposure	goes	beyond	aesthetic.”	[Arn]	Observing	an	object	or	an	
elephant	or	a	software	pattern	in	novel	situations	often	reveals	fresh	information.	

How	do	elephants	walk?	How	do	they	behave	in	specific	situations?	Video	footage	can	cover	more	of	these	
questions,	 it	 can	 even	 record	 sound.	 Showing	 a	 phenomenon	 in	 action	 is	 critical	 to	 understanding	 how	 it	
behaves	in	the	world.	

Even	 so,	 any	 visual	 depiction,	 even	 showing	 an	 object	 over	 a	 period	 of	 time,	 is	 still	 incomplete.	 Some	
phenomena	such	as	smell	or	heat	are	not	represented.	Such	information	could	be	supplied	verbally.	But	visual	
images	do	not	show	many	details	about	the	elephant’s	environment	and	social	context.	What	about	its	relation	
to	other	elephants?	How	does	an	elephant	integrate	into	its	herd?	What	is	its	relation	to	other	animals?	

Likewise,	we	can	ask	for	software	patterns	what	other	qualities	do	they	have	and	how	they	relate	to	other	
patterns.	This	is	often	explained	briefly	in	dedicated	description	fields	in	certain	pattern	forms.	But	rarely	do	
we	 see	 depictions	 of	 the	 actual	 interplay	 of	 a	 pattern	 with	 other	 design	 elements	 in	 realistic	 software	
environments.	

5. THE	LIMITS	TO	WHAT	WE	CAN	KNOW	

	“One	of	 the	reasons	why	 they	 [elephants]	have	 to	consume	so	much	 food	daily	 is	due	 to	 their	bodies.	They	only	
process	about	40%	of	what	they	eat	as	the	rest	of	it	never	gets	digested.	The	digestion	process	for	the	elephant	is	
very	different	than	that	of	other	animals.	It	really	isn’t	understood	why	their	bodies	don’t	digest	more	of	what	they	
consume.”	[EIF]	
	
What	 we	 can	 know	 depends	 on	 the	 questions	 we	 ask,	 our	 observations,	 and	 our	 actual	 experiences	 with	
elephants.	

The	answer	to	each	conceivable	question	we	can	ask	about	elephants	is	more	information	about	elephants.	
The	answer	is	contained	already	in	the	formation	of	elephants,	one	only	has	to	ask	the	question	and	find	ways	
to	 capture	 the	 answer.	 For	 example,	 we	 can	 observe	 how	 much	 elephants	 eat	 and	 how	 much	 waste	 they	
produce	 still	 without	 knowing	 little	 if	 anything	 about	 how	 they	 digest	 their	 food:	 “Depending	 on	 species,	
elephants	eat	anything	up	to	350	lbs	of	plant	matter	on	a	daily	basis”	[Bio].	If	you	want	to	know	the	weight	of	
an	elephant,	you	have	to	put	 them	on	a	scale.	Both	observations	 if	properly	done	will	not	alter	 the	nature	of	
elephants—the	facts	about	elephants	have	not	changed.	However,	once	we	capture	the	answers,	we	have	more	
information	 about	 the	 elephants.	 Still	 there	 are	 things	 we	 do	 not	 know	 yet	 about	 elephants	 after	 much	
observation.		

Likewise,	each	software	pattern	contains	an	abundance	of	information.	The	specific	information	we	capture	
depends	on	the	questions	we	ask	[Baey].	The	typical	format	for	pattern	descriptions	requires	some	information	
to	be	explicated.	This	explicit	knowledge	is	the	easy	stuff;	that	which	can	be	readily	articulated,	codified,	and	
communicated.	This	 format	directs	us	 to	different	questions	and	answers.	Context,	 problem,	 forces,	 solution	
and	consequences	each	ask	different	questions.	

Often,	for	software	patterns,	there	are	more	detailed	questions	as	well,	such	as	what	are	known	uses,	what	
are	some	implementation	details,	which	roles	can	be	identified?	The	more	questions	we	ask,	the	more	we	learn	
about	 the	 solution.	 However,	 each	 pattern,	 and	 each	 of	 its	 actual	 implementations,	 always	 has	 more	
information	than	captured.		

	
	

Elephants, Patterns, and Heuristics					Page	-	6	

We	 should	 also	 acknowledge	 that	 there	 might	 be	 situations	 where	 the	 answer	 to	 a	 specific	 question	 is	
unknown.	For	example,	we	may	understand	what	elephants	are	but	do	we	understand	in	which	environments	
they	 thrive?	Can	we	enumerate	or	even	generalize	 the	contexts	 they	 fit	 into?	Very	often	we	see	elephants	 in	
specific	contexts:	in	films,	in	a	zoo,	in	a	circus,	on	a	safari,	at	a	specific	time	of	the	year.	Can	we	really	learn	from	
these	snippets	which	environments	elephants	belong	in	and	in	which	environments	they	thrive?	Paradoxically,	
we	probably	know	more	about	elephants	in	environments	other	than	their	natural	ones.	

Designers	 face	 the	 same	 challenge	 when	 they	 observe	 software	 patterns.	 If	 a	 designer	 has	 employed	 a	
solution	in	similar	situations,	the	context	can	be	easily	described.	However,	that	designer	may	not	be	aware	of	
other	situations	where	the	pattern	is	likely	to	fail,	or	for	that	matter	where	other	suitable	alternatives	exist	and	
might	be	preferable.	

Consider	the	FAÇADE	pattern.	In	the	solution	outlined	in	Design	Patterns	[Gamma]	a	single	class	implements	
the	façade	role.	The	purpose	of	that	façade	class	is	to	hide	implementation	details	and	to	present	a	simplified	
interface.	However	 a	 façade	 can	be	useful	 for	 other	 (non	object-oriented)	 technology	 solutions.	And	even	 in	
object-oriented	 solutions,	 a	 single	 class	 as	 the	 sole	 entry	 point	might	 be	 considered	 over	 constraining	 or	 a	
poorly	 factored	 design	 under	 certain	 circumstances.	 In	 these	 days	 of	 more	 modern	 object-oriented	
programming	 languages,	we	might	 just	as	easily	define	one	or	more	 Interfaces	as	 façades	rather	 than	define	
façade	classes.	

Investigating	 the	 problem	 and	 forces	 of	 a	 pattern	 can	 be	 compared	 to	 researching	what	 has	 caused	 the	
specific	form	for	elephants.	What	is	their	role	within	the	ecosystem,	how	do	they	balance	nature?	How	would	
their	ecosystem	destabilize	if	they	disappear	(problem!)	and	how	does	the	specific	organism	of	elephants	fit	to	
the	environment	(forces!).		

Elephants	do	have	a	 specific	 role	and	purpose	within	 in	 their	 ecosystem	even	 if	 science	 lacks	knowledge	
about	or	misunderstands	it.	We	have	fully	“functioning”	elephants	without	us	understanding	all	the	details.	And	
yet,	 there	 is	 much	 more	 to	 research	 about	 how	 elephants	 evolved	 and	 how	 they	 interact	 with	 their	
environment.	

Likewise,	we	may	further	investigate	problems	and	forces	of	existing	software	patterns.	The	problem	and	
forces	sections	ask	why-questions.	Why	do	we	use	a	specific	form	for	a	solution?	A	force	explains	the	cause	for	
a	specific	design	decision	by	giving	a	“because”	answer	to	the	“why”	question	[Koh12].	But	sometimes	we	know	
that	a	solution	is	appropriate	(and	usually	works	well)	without	being	able	to	know	exactly	why	it	does.	

So	should	we	never	write	patterns	before	we	have	investigated	all	of	the	forces?	Or	should	we	just	continue	
to	search	for	more	forces,	better	explanations,	and	deeper	understanding	of	problems?	

We	speculate	 that	patterns	authors	might	hold	off	writing	more	definitive	pattern	descriptions	until	 they	
experience	or	observe	enough	instances.	What	is	precisely	“enough”	is	hard	to	pin	down.	Indeed,	that	may	be	
the	wrong	question	to	ask.	

We	view	software	patterns	as	a	particularly	informative	form	for	describing	design	heuristics	[Wirf17].	At	
the	same	time	we	are	acutely	aware	that	“[any	heuristic]	provides	a	plausible	aid	or	direction	in	the	solution	of	
a	 problem	 but	 is	 in	 the	 final	 analysis	 unjustified,	 incapable	 of	 justification,	 and	 potentially	 fallible.”	 [Koen]	
Using	a	particular	heuristic	does	not	guarantee	design	success.	That’s	why	we	need	to	have	at	hand	competing	
heuristics	to	try	(and	try	again)	if	the	particular	design	heuristic	we	choose	fails	us.	Furthermore,	we	argue	that	
we	don’t	have	to	know	all	the	reasons	why	some	design	pattern	or	heuristic	(typically)	works	in	order	to	apply	
it.	We	just	have	to	have	enough	confidence	that	it	is	a	reasonable	fit	for	the	current	situation.	

As	 we	 have	 seen,	 there	 are	 many	 different	 ways	 to	 describe	 and	 represent	 elephants,	 each	 varying	 in	
method	and	detail.	So	too,	are	there	many	ways	to	describe	software	design	heuristics.	Patterns	are	 just	one	
form.	Probably	a	form	we	should	reserve	for	those	better-understood	and	appreciated	design	heuristics,	even	if	
we	can’t	explain	everything	about	them.	

Science	has	established	many	different	forms	of	representing	phenomena	of	nature.	On	a	walk	through	the	
Natural	 History	 Museum	 in	 London,	 I	 (Chris)	 found	 a	 section	 that	 curated	 different	 scientific	 methods	 to	
capture	information	and	knowledge	about	animals,	including	observation,	recording,	mapping	and	modelling.	
At	one	end	of	the	knowledge	spectrum,	we	can	zoom	in	to	find	more	and	more	details.	On	the	other	end,	we	can	
zoom	out	to	generalize	and	leave	out	information	to	focus	on	the	core	of	a	form.		

A	pattern	solution	may	consist	of	 the	core	solution	(the	 thing),	 implementation	details	 (the	process),	and	
things	to	take	care	of	(liabilities).	When	we	describe	the	solution	of	a	pattern	we	also	ask,	what	is	the	general	
structure	 of	 the	 solution?	 We	 can	 also	 zoom	 in	 and	 discuss	 specific	 details	 such	 as	 how	 to	 generate	 or	

	
	

Elephants, Patterns, and Heuristics					Page	-	7	

implement	 the	 solution,	what	 variations	 exist,	 and	where	 you	 as	 a	 designer	 have	 to	 be	 careful.	We	 can	 also	
explore	our	understanding	of	the	benefits,	costs,	drawbacks,	trade-offs,	and	liabilities	of	the	solution.	Thus,	we	
often	ask	explicitly	about	the	consequences	of	a	solution.		

The	 more	 detailed	 the	 structure	 of	 our	 pattern	 descriptions	 are,	 the	 more	 information	 we	 provide.	
Sometimes	 as	 we	 attempt	 to	 write	 these	 descriptions,	 our	 knowledge	 gap	 becomes	 visible.	 We	 may	 not	
understand	the	whole	of	a	context	yet—even	if	we	have	successfully	applied	a	solution	multiple	times.		

Moreover,	the	general	questions	we	ask	about	patterns	can	also	be	misleading.	For	example,	on	which	level	
should	we	discuss	problems?	Many	software	patterns	address	the	problem	of	implementing	a	specific	design.	
Yes,	it	may	be	tricky	to	implement	a	well-behaved	OBSERVER.	So,	it	is	important	to	present	a	reasonable	solution.	
But	there	is	a	deeper	understanding	that	a	designer	needs	to	have	in	order	to	truly	“know”	that	pattern.	What	
problem	 does	 an	 OBSERVER	 actually	 resolve?	 We	 are	 not	 only	 interested	 in	 how	 to	 solve	 the	 problem	 of	
implementing	 an	 OBSERVER.	 We	 are	 even	 more	 interested	 in	 what	 design	 problem	 an	 OBSERVER	 solves:	 to	
decouple	 reactive	 design	 elements	 from	 design	 elements	 whose	 state	 changes	 they	 react	 to.	 Hence,	 a	 good	
pattern	 solution	 should	 not	 only	 ask	 “How	 to	 do	 X?”	 in	 a	 problem	 statement.	 This	 “how	 to”	 is	 an	 implicit	
problem	 that	 must	 be	 addressed	 by	 each	 pattern	 anyways!	 This	 is	 because	 each	 pattern	 ideally	 should	 be	
generative	and	describe	how	to	create	a	solution.	But	a	pattern	should	also	describe	which	actual	problem	is	
solved	and	answer	the	question	why	we	need	that	specific	pattern	in	the	first	place.	

6. HOW	CAN	WE	TRULY	KNOW	SOME	THING?	

“In	captivity,	elephants	will	eat	pretty	much	anything	so	long	as	it	is	strictly	vegetarian.	They	do	seem	to	enjoy	a	
wide	 variety	 of	 treats	 that	 they	wouldn’t	 find	 in	 their	 natural	 habitat	 –	 including	 pumpkins,	 and	 of	 course	 the	
famous	 peanuts!	 They’re	 big	 fans	 of	 anything	 sweet	 and	 sugary,	 and	 love	 all	 kinds	 of	 fruit.	 Just	 like	 humans,	
elephants	can	have	a	‘favourite	food’	that	varies	depending	on	the	individual	–	generally	speaking	it’s	some	kind	of	
sweet	fruit.”	[Bio]	
	
There	are	infinite	numbers	of	questions	we	can	ask	about	any	elephant.	Hence,	there	is	an	infinite	amount	of	
information	we	could	gather	about	elephants.		

To	 demonstrate	 the	 infinity	 of	 information	 about	 elephants,	 let	 us	 consider	 an	 example.	 A	 food	designer	
wants	to	test	two	new	elephant	foods.	The	designer	invents	two	new	products.	Now	he	wants	to	know	whether	
elephants	like	A	or	B	better.	If	we	test	this,	we	get	the	answer.	The	information	is	in	the	elephants	already.	But	
only	by	asking	the	question	and	observing	their	behavior	do	we	get	the	answer	and	access	to	the	information.		

As	there	are	an	infinite	number	of	potential	new	foods,	there	are	an	infinite	number	of	questions	we	can	ask	
about	elephants.	We	can	ask	any	kind	of	strange	questions:	Do	elephants	like	to	watch	baseball?	The	answer	is	
probably	no,	but	you	never	know	without	testing!		

As	we	seek	out	more	information,	we	can	find	information	that	is	not	relevant	to	our	situation.	Whether	A	
or	B	is	more	yummy	for	elephants	may	be	of	interest	for	a	food	designer	or	for	the	zoo	management.	However,	
most	of	us	are	more	interested	in	general	facts	such	as	the	amount	of	food	or	whether	elephants	ever	eat	meat.		

Researchers	and	pattern	authors	try	to	hone	in	on	the	most	“useful”	set	of	information.	Yet	it	is	important	to	
understand	 that	 the	pattern	of	 an	elephant	 is	 so	much	 richer	 than	any	 representation	can	ever	be.	And	 that	
specific	information	may	only	be	relevant	in	certain	contexts.	

We	have	seen	that	there	is	an	infinite	amount	of	information	we	can	gather	about	elephants.	Experts	have	
access	 to	 a	 significant	 and	 relevant	 subset	 of	 this	 information.	Many	 novices,	 however,	 think	 they	 have	 full	
information	about	a	phenomenon	when	they	repeatedly	observe	only	superficial	information.	

Many	 people	 say	 they	 know	 what	 elephants	 are.	 But	 do	 they?	 Do	 they	 know	 their	 weight?	 How	 many	
offspring	they	typically	have?	Do	they	know	how	to	react	if	they	face	an	elephant	in	the	wild?		

We	see	the	same	with	many	software	design	patterns.	Consider	the	MODEL-VIEW-CONTROLLER	 (MVC)	pattern.	
Many	developers	 learn	 about	 this	pattern	 early	 in	 their	 education.	There	 are	more	 students	who	 think	 they	
know	what	MVC	is	before	they	know	what	patterns	are.	

However,	most	developers	reduce	the	MVC	pattern	to	simply	a	concept	that	separates	the	model	from	the	
views	 and	 controllers,	 thus	making	 the	 code	 structure	more	 organized	 and	 the	 development	 of	 each	 design	
element	more	 independent.	There’s	nothing	wrong	with	 that.	However,	we	 see	 that	 even	 supposedly	 expert	
designers	of	frameworks	implement	MVC	in	many	different	ways	that	often	violate	core	design	principles.	For	
example,	 the	models,	 views	 and	 controllers	 are	 separated	 into	 different	 folders	 in	 the	 source	 code,	 but	 still	

	
	

Elephants, Patterns, and Heuristics					Page	-	8	

have	many	undesirable	dependencies.	And	 some	 (student)	developers	 claim	 to	 follow	 the	MVC	architecture.	
But	 if	 you	 ask	 them	 how	 to	 add	 views	 or	 change	 existing	 views	 without	 changing	 the	 model	 they	 cannot	
provide	proper	answers.	

Their	 superficial	observation	 is	 that	MVC	separates	 the	elements	 into	different	 folders	 so	developers	 can	
change	 the	 files	 independently.	 They	miss	 the	 important	 design	principle	 of	 loose	 coupling	 between	objects	
and	necessary	abstractions.	They	also	fail	to	recognize	the	OBSERVER	pattern	as	a	mechanism	to	notify	the	views	
about	 any	 changes	 in	 the	model.	 Students	 think	 they	 know	what	 the	MVC	 pattern	 is	 without	 knowing	 and	
understanding	the	Observer	mechanism	which	is	used	to	achieve	loose	coupling	between	models	and	views,	or	
more	generally,	between	some	design	element	that	is	observed	and	its	observers.	

This	kind	of	superficial	understanding	of	patterns	is	like	saying:	“I	was	in	the	zoo	last	week	and	watched	the	
elephants	for	a	day.	Believe	me,	now	I	know	all	about	elephants.”	

7. SOME	DIFFERENCES	BETWEEN	EXPERTS	AND	NOVICES	

“We	habitually	observe	by	the	method	of	difference.	Sometimes	we	see	an	elephant,	and	sometimes	we	do	not.	The	
result	 is	 that	 an	 elephant,	when	 present,	 is	 noticed.	 Facility	 of	 observation	 depends	 on	 the	 fact	 that	 the	 object	
observed	 is	 important	when	present,	and	 sometimes	 is	absent.”	—Alfred	North	Whitehead,	Process	and	Reality	
[Whit]	
	
Seeing	a	pattern	in	action	does	not	make	us	experts	on	that	pattern.	We	need	a	deeper	understanding.	We	need	
to	 see	 that	 pattern	 as	 it	 is	 applied	 in	 various	 situations,	 and	 to	 understand	what	 the	 design	 becomes	when	
other	 heuristics	 are	 used	 instead.	We	 need	 to	 understand	 the	 design	 principles	 and	 values	 that	 led	 to	 that	
pattern.	

We	 find	 that	novices	don’t	 gain	 such	understanding	by	 reading	 the	 same	material	 that	 experts	 consume.	
Why	 is	 this?	 Experts	 fill	 in	 the	 gaps	 in	 pattern	 descriptions	 with	 their	 own	 personal	 design	 heuristics	 and	
additional	 tacit	knowledge	 they’ve	acquired	over	 time.	Experts	 “see”	more	 than	 is	described.	And	 they	do	so	
intuitively,	without	conscious	effort.	

Still	the	question	remains:	how	might	patterns	best	be	introduced	to	novices?		
The	information	provided	in	a	pattern	description	needs	to	fit	the	knowledge	and	preferences	of	the	target	

audience.	
In	order	to	understand	a	pattern,	a	novice	has	to	contrast	it	with	its	surroundings	before	she	can	see	what’s	

important	about	that	particular	pattern.	Additionally,	she	has	to	observe	what’s	constant	about	that	form	over	
space	and	time	and	various	use	cases.	

If	design	novices	are	also	students,	then	one	plausible	pedagogical	approach	might	be	to	introduce	them	to	
a	 particular	 design	 problem.	 Then,	 show	 them	 code	 that	 solves	 that	 problem	 using	 a	 specific	 pattern.	 After	
seeing	that	code	and	understanding	what	it	does,	then	and	only	then	explain	the	pattern	to	them.	

To	 understand	 a	 particular	 pattern’s	 significance,	 beginning	 designers	 also	 can	 benefit	 from	 seeing	 this	
pattern	 as	 it	 is	 applied	 in	 various	 different	 programming	 languages	 and	 technologies.	 And	 then,	 to	 gain	 a	
broader	appreciation	of	that	pattern’s	applicability,	they	could	be	given	additional	problems	that	they	can	solve	
by	applying	that	same	pattern.	Repetition	accompanied	by	meaningful,	explicit	variation.	

Arnheim	notes	that	a	concept	 from	which	everything	 is	subtracted	but	 its	 invariants	 facilitates	definition,	
classification,	learning	and	use	of	that	learning	because	“[t]he	object	looks	the	same,	every	time	it	is	met.”	[Arn]	
Seeing	a	single	concrete	example	is	often	not	enough	to	comprehend	a	general	abstraction.	Designers	need	to	
observe	slight	design	variances	that	can	still	be	called	some	particular	pattern	so	that	they	come	to	know	both	
what	this	pattern	means	and	what	it	means	to	not	be	that	pattern.	Sadly,	stripped-down,	the	essential	depiction	
of	 a	 solution	 for	 the	 typical	 software	 design	 pattern	 removes	 us	 from	 any	 concrete,	 realistic,	 tangible	
experience.	 The	 rigidity	 of	 such	 exemplars	 can	 blind	 novices	 to	 the	 idea	 that	 they	 should	 examine	 their	
particular	context	for	insights	and	constraints.	Designers	should	always	expect	to	adapt	the	exemplary	solution	
appropriately	 for	 every	 context.	 They	 need	 to	 see	 variations	 in	 implementation	 of	 a	 particular	 pattern.	
Beginners	need	to	learn	that	there	is	no	one	“right	way”	to	apply	a	particular	pattern.		

To	become	proficient	at	applying	a	pattern	to	solve	a	non-textbook	or	classroom	problem,	novices	need	to	
do	more	 than	 a	 cut-and-paste	 reuse	 of	 a	 pattern.	 They	 also	 need	 to	 be	 exposed	 to	 other	 reasonable	 design	
solutions	to	the	same	problem.	

	
	

Elephants, Patterns, and Heuristics					Page	-	9	

This	 is	 something	 I	 (Rebecca)	exposed	my	object	design	students	 to	as	a	matter	of	 course.	 I	would	 show	
them	 several	 different	 solutions	 that	 the	 students	 themselves	 came	 up	with.	 To	 do	 this,	 they	 solved	 a	 non-
trivial	problem.	I	hoped	that	they	would	choose	to	use	the	specific	pattern	they	had	just	learned	about	to	solve	
a	 problem	 (so	we	 could	 observe	 their	 various	 implementations),	 but	 this	wasn’t	 always	 the	 case.	 Instead	of	
insisting	 that	 they	 solve	 the	 problem	 a	 particular	way,	 I	 allowed	 them	 to	 submit	 solutions	 as	 long	 as	 their	
solution	worked	reasonably	well.	We	would	then	review	and	critique	the	various	solutions.	By	seeing	multiple	
design	 solutions	 that	 worked	 more	 or	 less,	 students	 came	 to	 appreciate	 the	 variety	 of	 reasonable	 design	
alternatives	 available	 to	 them,	 each	 with	 their	 strengths	 and	 weaknesses.	 To	 learn	 how	 to	 exercise	 design	
judgment,	they	also	need	to	see	and	appreciate	the	nuances	of	different	design	solutions.	

Arnheim	argues	 that	 the	 kind	of	 concept	 created	by	 contextually	 integrated	 viewing	 (in	 this	 case,	 seeing	
different	solutions	 for	 the	same	problem	and	then	critically	examining	 them)	allows	 for	productive	 thinking,	
that	is,	thinking	“outside	the	box.”	

Experts	 appreciate	 knowing	when	 to	 use	 a	 pattern	 (and	 advice	 on	when	not	 to	 use	 it)	 as	well	 as	 how	 it	
compares	with	other	design	 alternatives.	There	 are	 always	 competing	heuristics	 and	multiple	ways	 to	 solve	
any	 particular	 design	 problem.	 Experts	 also	 appreciate	 details:	what	 complexities	 there	 are,	what	 to	 expect	
during	implementation,	what	variations	there	are	and	when	choosing	those	variations	might	be	preferable.		

Many	times,	however,	regardless	of	expertise,	designers	just	want	to	solve	the	current	pressing	problem	of	
the	day.	They	don’t	want	theory,	principles,	patterns,	or	lofty	design	heuristics.	They	don’t	have	the	patience	to	
wade	through	explanatory	information.	Often	they	are	seeking	concrete,	detailed,	and	very	specific	information	
or	advice	on	what	to	do	next.	They	don’t	need	patterns	so	much	as	they	need	detailed	relevant	information	that	
will	help	them	take	that	next	design	step.	Often	this	is	at	a	different	level	(e.g.	specific	coding	details)	than	most	
software	patterns	are	written.	Pattern	descriptions,	after	all,	are	abstractions.		

In	this	situation	they	seek	an	“exemplary”	solution	(ideally	code)	that	they	can	read	and	quickly	understand,	
in	order	to	copy	and	modify	to	suit	their	purpose	(e.g.	taking	code	snippets	from	blog	posts	or	stack	overflow).	
Occasionally,	 especially	more	experienced	designers	may	also	want	 to	know	a	bit	 about	 the	why	behind	 the	
recommended	“what	to	do.”	But	not	until	they’ve	figured	out	that	this	particular	solution	seems	reasonable.	

But	 designers	 do	 take	 occasionally	 take	 a	 breath,	 and	 pause	 to	 think	 on	what	 they	 did	 and	 how	well	 it	
worked.1	 We	 suggest	 that	 recording	 one’s	 design	 ideas	 and	 heuristics	 and	 experiences	 (not	 patterns)	 in	 a	
design	 journal	 is	one	powerful	way	to	grow	one’s	reflective	design	skills	and	expertise	 [Wirf18].	We	need	to	
reflect	 on	 the	 outcome	 of	 our	 design	 choices	 in	 order	 to	 learn	 from	 our	 experiences.	 Through	 the	 act	 of	
recording	the	design	heuristics	we	applied	(and	under	what	situations	they	worked	or	didn’t)	we	can	become	
more	intentional	as	designers,	and	more	aware	of	our	design	choices	and	their	consequences.	We	make	choices	
based	upon	our	specific	context,	our	personal	preferences,	our	experience,	and	our	wealth	of	personal	design	
heuristics	that	we	have	at	hand	(in	addition	to	all	we’ve	read	about	or	studied	at	school).	Our	tacit	knowledge	
enables	us	to	adapt	patterns	to	our	specific	situations.	And	it	will	enable	us	to	find	creative	solutions	to	design	
problems	we’ve	never	seen	before.		

As	Whitehead	observes:	“The	true	method	of	discovery	is	like	the	flight	of	an	aeroplane.	It	starts	from	the	
ground	of	particular	observations;	 it	makes	a	 flight	 in	 the	 thin	air	of	 imaginative	generalization;	and	again	 it	
lands	for	the	renewed	observation	rendered	acute	by	rational	interpretation.”	[Whit]	

8. MISPERCEPTIONS,	MISCONCEPTIONS,	AND	THE	STORIES	WE	TELL	OURSELVES	

A	 little	expertise	can	be	dangerous.	Thinking	oneself	an	expert	can	be	dangerous.	 If	your	assumptions	about	
elephants	 are	 based	 on	 TV	 shows,	 zoos,	 and	 circus	 visits	 you	 likely	 will	 have	 constructed	 a	 wrong	mental	
picture.	If	you	face	an	elephant	in	the	wild	you	may	react	all	wrong.	You	may	provoke	the	elephant	in	spite	of	
its	friendly	nature.	

Let	us	assume	somebody	wants	to	become	an	expert	on	elephants	and	studies	them	for	a	day	in	the	zoo.	She	
observes	that	elephants	get	their	food	at	9	a.m.	in	the	morning	from	the	zookeeper.	So	she	claims	that	“Believe	

1 In my early years as a software engineer at Tektronix, I (Rebecca) was issued an engineering notebook, as were all
electrical, mechanical, and software engineers. We were instructed to write down by hand (and to initial and date each
page) our design ideas. This notebook’s primary purpose was to document design ideas that were potentially
patentable, but arguably, the discipline of writing down my design notes also helped me appreciate the value of
clarifying and explaining to myself (and eventually others) my design ideas and approaches.

	
	

Elephants, Patterns, and Heuristics					Page	-	10	

me,	elephants	start	eating	at	9	a.m.	with	 food	provided	by	 from	zookeepers.	That’s	 the	nature	of	elephants.”	
And	if	you	raise	some	doubts,	our	elephant	expert	says:	“Wait	a	few	weeks	and	I	will	provide	more	evidence.”	
She	then	observes	elephants	 for	 the	next	30	days	at	 the	zoo.	And	guess	what:	 the	elephants	always	get	 their	
food	starting	at	9	a.m.	More	precisely,	the	observations	have	shown	some	variations.	Sometimes	elephants	get	
the	food	at	9:05	or	even	at	9:10,	sometimes	even	at	8:58	a.m.	So,	our	expert	adjusts	the	statement	and	claims	
that	elephants	get	 their	 food	between	8:58	and	9:10	a.m.	She	provides	a	 lot	of	evidence	based	on	30	days	of	
observation.	Doing	this	over	a	full	year,	this	data	becomes	statistically	sound.	What’s	missing?	

The	answer	is:	our	expert	has	ignored	the	specific	context.	The	claim	that	elephants	start	eating	at	9:00	a.m.	
on	every	day	 is	only	valid	 for	 the	specific	zoo	she	visits.	 If	 she	visits	other	zoos,	 she	will	 learn	about	 further	
variations.	For	example,	at	the	Portland	Zoo	(which	doesn’t	open	to	the	public	until	9:30	a.m.)	elephants	are	fed	
at	timed	feeding	stations.	Zookeepers	offer	food	to	the	elephants	at	specific	times	(after	all,	the	typical	elephant	
needs	to	eat	nearly	200	kilograms	of	vegetables	and	grasses	each	day).	When	I	(Rebecca)	visited	the	Portland	
Zoo	shortly	after	it	had	opened,	I	only	observed	elephants	actually	finishing	up	a	timed	meal,	at	10:30.	I	do	not	
know	if	they	started	eating	at	9	a.m.	and	I	do	not	know	when	they	stopped	eating	(as	I	only	observed	them	for	
an	hour).	

If	 our	 supposed	 elephant	 expert	 visits	 the	 same	 zoo	 2	 years	 later	 she	may	 also	 see	 new	 data	 if	 the	 zoo	
management	has	shifted	 feeding	 times.	And	 if	our	elephant	expert	would	bother	 to	observe	elephants	 in	 the	
wild—in	their	most	common	context—she	would	make	quite	different	statements	about	food	habits.		

Misinterpreting	 the	 scope	of	 a	 context	 is	 common	mistake.	We	observe	a	 software	design	pattern	within	
one	specific	environment:	one	company,	one	programming	language,	or	one	developer	team,	and	assume	that	
the	characteristics	of	the	pattern	are	true	for	many	other	contexts.	However,	without	observing	the	pattern	in	
these	other	contexts,	we	cannot	make	decisive	statements	about	these	other	contexts!	And	most	certainly,	our	
perceptions	may	 be	 obscured	 by	 any	 personal	 design	 heuristics	 and	 adaptations	 of	 that	 pattern	 for	 specific	
design	contexts.	

There	 is	 a	 difference	 between	 a	 single	 writer	 reporting	 her	 patterns	 and	 the	 outcomes	 of	 a	 group	
discussion.	Likewise	the	range	of	domains	and	contexts	in	which	a	pattern	has	been	observed	is	critical	to	its	
general	applicability	[KP].	For	example,	 if	a	pattern	has	been	observed	multiple	times	in	Java	programs,	does	
this	necessarily	imply	that	it	will	work	for	C++	code	as	well?	Without	having	observed	or	tested	it,	one	cannot	
really	(empirically)	tell.	

The	story	of	the	blind	men	and	the	elephant	is	a	very	old	parable	that	discusses	the	limits	of	perception	and	
the	meaning	of	context.	It	can	be	found	in	Buddhist,	Hindu,	and	Jain	texts	(see	Wikipedia).	The	parable	goes	like	
this	(from	Wikipedia)	[Wiki]:	

	
A	group	of	blind	men	heard	that	a	strange	animal,	called	an	elephant,	had	been	brought	to	the	town,	
but	none	of	them	were	aware	of	its	shape	and	form.	Out	of	curiosity,	they	said:	“We	must	inspect	and	
know	it	by	touch,	of	which	we	are	capable.”	So,	they	sought	it	out,	and	when	they	found	it	they	groped	
about	it.	In	the	case	of	the	first	person,	whose	hand	landed	on	the	trunk,	said,	“This	being	is	like	a	thick	
snake.”	For	another	one	whose	hand	reached	its	ear,	it	seemed	like	a	kind	of	fan.	As	for	another	person,	
whose	hand	was	upon	its	leg,	said,	the	elephant	is	a	pillar	like	a	tree-trunk.	The	blind	man	who	placed	
his	hand	upon	its	side	said	the	elephant,	“is	a	wall.”	Another	who	felt	its	tail	described	it	as	a	rope.	The	
last	felt	its	tusk,	stating	the	elephant	is	that	which	is	hard,	smooth	and	like	a	spear.	

	

	
	

Elephants, Patterns, and Heuristics					Page	-	11	

	
By	Illustrator	unknown	-	From	Martha	Adelaide	Holton	&	Charles	Madison	Curry,	Holton-Curry	readers,	Rand	McNally	&	Co.	(Chicago),	p.	
108,	Public	Domain,	https://commons.wikimedia.org/w/index.php?curid=4581243	

What	does	this	parable	mean	for	pattern	writers?	We	need	to	be	aware	that	we	may	experience	parts	of	a	
pattern	but	are	still	missing	important	aspects.	We	need	to	be	careful	to	not	call	ourselves	experts	too	soon.	It	
also	 shows	 that	we	 can	 report	 and	describe	 the	very	 same	 things	 in	quite	different	ways	when	we	 focus	on	
different	parts	of	the	whole.	

We	have	argued	that	pattern	descriptions	try	to	capture	 forms	that	exist	 in	the	world.	Whether	a	pattern	
description	adequately	captures	a	structure	that	can	actually	be	found	in	the	world	is	an	outstanding	question.	
Moreover,	if	the	authors	are	not	experienced	in	their	domain	they	might	capture	the	wrong	patterns.	But	even	
if	we	have	adequate	patterns	in	our	head,	the	explicate	description	will	always	be	incomplete,	misleading,	or	
focus	on	the	wrong	things.	

Therefore,	we	need	ways	to	ensure	that	the	pattern	descriptions	actually	represent	meaningful	patterns	of	
the	world.	A	written	pattern	should	be	the	result	of	thoughtful	pattern	mining,	a	process	that	extracts	“nuggets	
of	wisdom.”	We	 can	 say	 “wisdom”	 because	 the	 insights	 in	 those	 patterns	 are	 grounded	 in	many	 reviews	 of	
actual	designs.	Extracting	this	knowledge	is	like	mining	for	nuggets	[Ris];	the	core	of	the	pattern	is	pointed	out;	
the	 noise	 of	 actual	 instances	 is	 taken	 away.	 This	mining	process	 is	 a	 process	 of	 cognition—as	 is	 any	 theory	
building.	A	pattern	author	often	reconsiders	the	artefacts	and	examples	her	pattern	is	based	on.	Writing	down	
the	pattern	is	also	an	active	process	whereby	the	writer	tries	to	assemble	the	universal	structure	of	the	pattern.	
Pattern	 descriptions	 are	 proposals	 of	 specific	 views	 on	 the	 world,	 and	 of	 solutions	 to	 agreed-upon	 design	
problems	in	particular.	However,	their	validity	needs	to	be	tested,	as	does	any	theory.		

9. LET’S	TALK	ABOUT	THE	ELEPHANT	IN	THE	ROOM	

An	“elephant	in	the	room”	is	“an	important	or	enormous	topic,	problem,	or	risk	that	is	obvious	or	that	everyone	
knows	 about	 but	 no	 one	 mentions	 or	 wants	 to	 discuss”	 (Cambridge	 academic	 content	 dictionary).	 There	 are	
various	reasons	an	“elephant	in	the	room”	might	not	be	addressed.	The	issue	might	be	that	the	topic	is:	something	
that	 is	 uncomfortable	 to	 bring	 up,	 or	 something	 that	 is	 taboo,	 something	we	 choose	 to	 deliberately	 ignore,	 or	
something	that	is	so	obvious	to	everyone	that	we	don’t	mention	it.	

	
We	 believe	 that	 there	 are	 several	 elephants	 in	 our	 patterns	 community	 room.	 They	 exist	 for	 various	

reasons.	Nobody	has	been	talking	very	much	about	these	elephants	in	the	room.	Or	if	they	are,	they	haven’t	been	
speaking	 loudly.	 This	 essay	 has	 touched	 on	 some	 of	 these	 issues	 and	 elephants	 in	 the	 rooms.	We	 want	 to	

	
	

Elephants, Patterns, and Heuristics					Page	-	12	

conclude	 on	 a	 positive	 note	 by	 summarizing	 them	 and	 then	 offering	 some	 avenues	 for	 patterns	 authors,	
educators,	and	software	developers	and	designers	to	explore.	

Something	 that	 is	 uncomfortable	 to	 bring	 up:	 To	 get	 the	 “right”	 views	 on	 patterns	 is	 problematic.	
Perhaps	this	shouldn’t	be	our	goal.	Instead,	we	need	to	seek	augmented	ways	to	depict	software	patterns	that	
allow	for	productive	thinking	and	their	creative	application.	

There	 are	many	ways	 of	 seeing	 the	world	 and	 organizing	 its	 structure;	 and	 there	 is	 always	 doubt	 as	 to	
whether	we	have	seen	enough	of	the	world	to	identify	sufficiently	stable	patterns	(let	alone	good	examples	of	
them).	 Patterns	 that	 have	 been	 identified	 in	 a	 pattern	 mining	 process	 are	 fallible	 in	 principle	 and	 can	 be	
falsified	empirically.	If	a	pattern	consistently	fails,	even	if	it	is	well	known,	it	needs	to	be	rejected—perhaps	the	
pattern	 description,	 or	 the	 pattern	 in	 its	 entirety.	 However,	 patterns,	 like	 all	 design	 heuristics,	 are	 fallible.	
Successful	 pattern	 applications,	 on	 the	 other	 hand,	 are	 corroboration	 of	 the	 adequateness	 of	 the	 insight	
provided	in	a	pattern	description.	

Pattern	 descriptions,	 or	 any	 other	 account	 of	 design	 heuristics,	 are	 not	 simply	 about	 finding	 the	 “truth”	
about	good	design.	They	are	also	design	 tools	 to	generate	new	good	designs.	Thus,	 they	go	beyond	ordinary	
theories.	The	quality	of	writing	of	a	pattern	and	the	ways	patterns	are	depicted	matters	just	as	much	as	does	
the	adequateness	of	the	identified	pattern.	

Many	people	invoke	the	metaphor	of	a	story	or	a	play	[Ris]	and	point	out	that	patterns	are	not	just	about	
facts	but	should	tell	a	story	[Appl].	The	context	sets	up	the	stage.	As	in	a	play,	the	forces	are	creating	a	tension	
and	the	solution	is	resolving	the	conflict—a	happy	ending.		

However,	 is	 this	 sequence	always	 the	 appropriate	order?	There	 are	many	ways	 to	 tell	 a	 story,	 and	 some	
stories	 start	 with	 the	 end.	 If	 we	were	 about	 to	 describe	 an	 elephant,	 would	 we	 naturally	 start	 with	 all	 his	
evolutionary	history	and	reason	about	why	 this	 species	 fits	 into	 the	very	environment	elephants	 live	 in?	Or,	
would	 we	 start	 with	 a	 picture	 first	 and	 then	 go	 into	 details?	 Most	 accounts	 about	 elephants	 use	 the	 latter	
approach.	First	show	the	object,	and	then	explain	the	phenomenon.	

Stories	are	such	a	powerful	tool	because	they	are	capable	of	transporting	the	wholeness	of	a	solution.	We	
experience	 wholeness	 if	 we	 follow	 a	 story	 in	 a	 novel.	 The	 plot	 unfolds	 chapter-by-chapter,	 paragraph-by-
paragraph,	sentence-by-sentence,	and	word-by-word.	The	parts	make	the	story	and	the	story	gives	meaning	to	
each	 of	 the	 parts.	 A	 simple	 sentence	 such	 as	 “The	 door	was	 locked”	 has	 its	 own	meaning;	 however,	 in	 the	
context	of	a	 larger	story	 its	meaning	can	shift.	A	 locked	door	has	a	deeper	meaning	in	a	crime	story	where	a	
victim	tries	to	escape.	The	same	sentence	can	have	a	different	meaning	in	a	love	story:	“She	wanted	to	tell	him	
her	 feelings	 and	 caught	 up	 with	 the	 train	 at	 the	 local	 station.	 The	 door	 was	 locked.”	 The	 context	 not	 only	
changes	 the	 meaning	 of	 the	 sentence;	 the	 single	 sentence	 that	 reveals	 an	 important	 fact	 or	 event	 can	 also	
change	the	meaning	of	the	whole	story.	The	story	directs	the	development	of	the	events,	scenes	and	characters;	
at	the	same	time	the	story	is	made	up	exactly	out	of	these	interrelated	parts.	

If	we	consider	the	literature	genre	of	patterns	as	storytelling,	then	we	should	allow	and	encourage	different	
forms	of	telling	this	story:	A	short	story;	a	whole	book;	a	series	of	stories;	or	even	telling	the	story	with	motion	
pictures	or	cartoons.	

Something	that	is	taboo:	Software	patterns	today	are	often	irrelevant	and	invisible.	The	body	of	software	
patterns	 over	 time	 has	 become	 disorganized,	 stale,	 outdated,	 and	 unknown	 to	 many	 software	 developers.	
While	 new	 patterns	 are	 being	 written,	 they	 are	 mostly	 ignored	 unless	 they	 are	 about	 a	 popular	 trending	
technology	 (e.g.	 microservices,	 event-sourced	 architectures).	 When	 new	 patterns	 are	 published	 they	 aren’t	
located	within	the	overall	pre-existing	software	pattern	landscape.	Consequently,	they	are	disconnected	from	
prior	work.	There	is	no	overall	coherence	to	the	large	body	of	software	patterns.	Furthermore,	there’s	a	wealth	
of	 useful,	 specific,	 concrete	 design	 advice	 being	written	 and	 communicated	 to	 broad	 audiences	 that	 are	 not	
written	as	patterns.	

If	we	want	to	encourage	pattern	literacy,	relevancy,	and	long-term	impact,	something	needs	to	change.	
In	addition	to	finding	better	ways	to	organize	patterns	and	presenting	relevant	depictions	of	them,	we	need	

to	find	better	ways	to	explain	how	to	adjust	patterns	into	specific	contexts,	how	to	sort	through	them,	and	add	
or	find	the	information	a	designer	needs	when	she	is	able	and	willing	to	absorb	it.		

Furthermore,	the	word	pattern	may	be	the	wrong	word	for	what	we	write.	Most	people	outside	of	software	
think	of	patterns	as	being	something	different	than	what	we	create	when	we	write	our	software	patterns.	

Merriam	Webster	 lists	several	meanings	for	pattern.	The	first	definition	is	“a	form	or	model	proposed	for	
imitation,	an	exemplar.”	The	second	definition	is	“something	designed	or	used	as	a	model	for	making	things.”	

	
	

Elephants, Patterns, and Heuristics					Page	-	13	

While	our	software	patterns	often	provide	simple	solutions,	should	they	be	exemplars	or	models	for	makers?	
Or	should	they	be	something	less,	e.g.	design	gists?		

Something	deliberately	ignored:	Different	audiences	for	software	design	patterns	need	different	ways	to	
absorb,	comprehend,	and	understand	how	to	apply	them.	

The	way	experts	absorb	information	differs	from	novices.	Historically,	software	patterns	were	written	for	
practitioners	(and	experienced	ones	at	that)	and	not	novice	developers.	Ironically,	it	is	the	original	23	patterns	
in	Design	Patterns	 [Gamma],	written	by	experts	 for	experienced	developers	 that	were	and	still	 are	 taught	 to	
novices.	

Researchers	 find	 that	 experts,	 while	 they	may	 not	 agree,	 are	 logically	 self-consistent	 in	 their	 individual	
opinions	 [Shan].	 Patterns	 written	 by	 single	 individuals	 or	 a	 tight-knit	 group	 of	 collaborators	 are	 cohesive.	
Patterns	from	different	sources	often	are	not.	Experts	can	absorb	differences	of	style	and	substance	with	some	
effort	and	even	reconcile	conflicting	patterns’	advice;	this	is	a	much	harder	task	for	those	new	to	patterns	or	to	
software	design.		

If	 we	 want	 many	 more	 software	 patterns	 to	 have	 a	 lasting	 impact,	 there	 needs	 to	 be	 some	 way	 that	 a	
broader,	more	useful	number	of	software	patterns	are	coherently	organized	and	easily	found.	

Rather	than	drowning	pattern	readers	in	even	more	text,	verbal	descriptions,	and	caveats,	we	propose	that	
a	 better	 way	 to	 establish	 richer,	 more	 productive	 views	 of	 patterns	 would	 be	 to	 present	 curated	 views	
depicting	 multiple	 instances	 of	 particularly	 useful	 patterns	 in	 situ.	 Besides	 showing	 a	 good	 canonical	
implementation	that	applies	a	pattern,	most	patterns	could	benefit	from	“how	to	not	do	it”	code	examples.		

Additionally,	designers	should	be	encouraged	to	create	and	share	notes	on	their	personal	experiences	with	
patterns.	What	if	there	were	easy	ways	for	designers	to	annotate	and	enrich	published	patterns	with	their	own	
design	heuristics?	How	to	best	accomplish	this	(and	which	patterns	warrant	such	curation)	is	a	topic	for	future	
research.	Focusing	solely	on	writing	new	patterns	misses	an	opportunity	for	the	patterns	community	to	hook	
up	patterns	with	others’	real	world	experiences.		

An	obvious	problem:	Currently,	we	mostly	write	patterns	for	ourselves	or	for	people	whom	we	think	are	
like	us.	This	limits	our	patterns’	reach	and	impact.	Pattern	forms	need	to	be	refreshed.	

Arnheim	 argues	 that	 the	 kind	 of	 concept	 created	 by	 contextually	 viewing	 objects	 is	 better	 suited	 for	
reasoning	about	those	objects	in	different	situations	and	under	different	conditions.	Our	current	written	forms	
for	software	patterns	 fall	short	 in	 this	regard—pattern	depictions	typically	describe	 just	enough	context	and	
forces,	 before	 providing	 a	 stylized,	 exemplary	 solution.	 For	 the	 most	 part,	 pattern	 solutions	 present	 a	
contextually	isolated	view.	While	this	facilitates	definition,	classification,	and	learning,	it	does	not	build	in	the	
mind	 of	 the	 reader	 a	 deep	 understanding	 of	 that	 pattern	 in	 a	 realistic	 setting.	 Simply	 reading	 patterns	 and	
learning	 pattern	 names	 doesn’t	 ensure	 that	 the	 reader	 can	 apply	 them	 appropriately	 (if	 at	 all).	 Moreover,	
learning	about	patterns	may	be	counterproductive	to	learning	how	to	exercise	design	judgment	

We	patterns	writers,	too,	could	benefit	from	further	stretching	our	imaginations	to	envision	the	boundaries	
and	true	shape	of	our	patterns.	By	mentally	exercising	the	limits	of	our	patterns	we	might	gain	new	insights.	
Again,	from	Whitehead:	“The	reason	for	the	success	of	this	method	of	imaginative	rationalization	is	that,	when	
the	method	of	difference	fails,	factors	which	are	constantly	present	may	yet	be	observed	under	the	influence	of	
imaginative	thought.	Such	thought	supplies	the	differences,	which	the	direct	observation	lacks.	It	can	even	play	
with	 inconsistency	 and	 can	 thus	 throw	 light	 on	 the	 consistent,	 and	 persistent,	 elements	 in	 experience	 by	
comparison	 with	 what	 in	 imagination	 is	 inconsistent	 with	 them.	 This	 negative	 judgment	 is	 the	 peak	 of	
mentality.”	[Whit]	

As	patterns	authors,	we	intentionally	create	depictions	of	what	we	have	found	along	a	design	journey	that	
we’ve	already	taken	that	we	hope	others	can	follow.	But	we	shouldn’t	be	content	to	only	write	in	pattern	form.	
Patterns	convey	critical	information	so	that	others	on	similar	journeys	can	learn	about	our	design	thinking.	

We	have	an	opportunity	to	offer	our	fellow	designers	much	more.	
What	 if	we	were	 to	 tell	more	of	our	personal	 story	as	designers	and	pattern	miners?	We	might	describe	

what	 systems	 we’ve	 designed	 or	 seen,	 and	 under	 what	 conditions	 they	 were	 designed.	 Or	 share	 how	 we	
discovered	 our	 software	 patterns	 and	 enumerate	 other	 potential	 intriguing	 design	 ideas	 that	we	 spotted	 or	
were	aware	of	but	didn’t	include	(and	why).		

We	might	 share	where	we’d	 like	 to	 investigate	 further—other	 design	 contexts	where	we	 are	 curious,	 or	
not—places	where	we	are	cautious	or	reluctant	to	recommend	using	our	patterns.	We	might	experiment	with	
recording	others’	heuristics	that	fill	in	the	gaps,	conflict	with,	augment,	and	mesh	with	our	written	patterns.	We	

	
	

Elephants, Patterns, and Heuristics					Page	-	14	

might	 share	how	confidant	we	were	about	our	patterns’	utility	or	our	perception	of	 their	 relative	value	and	
whether	 that	 perception	 has	 changed	 over	 time.	 Or	 we	 might	 be	 so	 bold	 as	 to	 rate	 our	 patterns	 with	
recommended	 design	 experience	 required	 to	 utilize	 them	 successfully.	 While	 all	 this	 stuff	 is	 “outside”	 our	
current	pattern	forms,	we	think	it	this,	too,	is	important	information	for	designers	to	know.	

10. ACKNOWLEDGEMENTS	

We’d	like	to	thank	our	shepherd,	Joseph	Yoder,	for	reading	early	drafts	of	this	essay	and	prompting	us	to	try	
harder	to	weave	heuristics	and	elephants	into	it.	We’d	also	like	to	thank	our	writers’	workshop	colleagues	for	
giving	 us	 pointed,	 if	 sometimes	 conflicting,	 advice	 about	 ways	 to	 make	 this	 essay	 more	 cohesive	 and	
compelling.	 In	particular,	we	want	 to	 thank	Lise	Hvatum	who	continued	 to	provide	us	 thoughtful	 comments	
after	the	writers’	workshop.	
REFERENCES	
[Alex]	Alexander,	C.	1979.	The	Timeless	Way	of	Building.	New	York:	Oxford	University	Press.	
[AISJFA]	Alexander,	C.,	 Ishikawa,	S.,	Silverstein,	M.,	 Jacobson,	M.,	Fiksdahl-King,	 I.,	&	Angel,	S.	1977.	A	Pattern	Language.	New	York,	USA:	
Oxford	University	Press.		
[Appl]	Appelton,	B.	2000.	Patterns	and	Software:	Essential	Concepts	and	Terminology.		
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html.	(1.7.2009)	
[Arn]	Arnheim,	R.	2004.	Visual	Thinking,	University	of	California	Press;	Second	Edition,	Thirty-Fifth	Anniversary	Printing	edition.	
[Baey]	Von	Baeyer,	H.	C.	Information:	The	new	language	of	science.	2004.	London:	Phoenix.		
[Bio]	BioExpedition,	Elephant	Feeding.	Retrieved	from:	https://www.bioexpedition.com/elephant-feeding/	
[BHS]	Buschmann,	 F.,	Henney,	K.,	&	 Schmidt,	D.C.	Pattern-oriented	 software	 architecture.	 Volume	5:	On	 patterns	 and	Pattern	 Languages.																			
2007.	West	Sussex:	John	Wiley	&	Sons.	
[Bran]	Brandolini,	A.	2019.	Introducing	Eventstorming,	LeanPub.	
[EIR]	Elephant	Information	Repository.	The	Skin.	Retrieved	from	
http://elephant.elehost.com/About_Elephants/Anatomy/The_Skin/the_skin.html	
[Gamma]	 Gamma,	 E.,	 Helm,	 R.,	 Johnson,	 R.,	 Vlissides,	 J.	 1995.	Design	 Patterns:	 Elements	 of	 Reusable	 Object-Oriented	 Software.	Addison-
Wesley.		
[Good]	Goodman,	N.1976.	Language	of	art:	An	approach	to	a	theory	of	symbols.	Indianapolis,	Ind:	Hackett	Publishing	Co.	
[Ker]	Kerievsky,	J.	Refactoring	to	Patterns.	Addison-Wesley,	2004	
[Koen]	Koen,	B.V.	2003.	Discussion	of	the	method:	Conducting	the	Engineer’s	approach	to	problem	solving,	Oxford	University	Press.	
[Koh12]	Kohls,	C.	“The	Path	to	Patterns	-	Introducing	the	path	metaphor”.	2012.	EuroPLoP	2012.	–	17th	European	Conference	on	Pattern	
Languages	of	Programs.	New	York:	ACM.		
[Koh14]	The	theories	of	design	patterns	and	their	practical	implications	exemplified	for	e-learning	patterns.	2014	
https://opus4.kobv.de/opus4-ku-eichstaett/files/158/kohls_patterns13032014.pdf	
[KP]	Kohls,	C.,	&	Panke,	S.	Is	that	true?	“Thoughts	on	the	epistemology	of	patterns.”	2009.	Proceedings	of	the	16th	Conference	on	Pattern	
Languages	of	Programs.	New	York:	ACM.		
[Evan]	Evans,	E.	2003.	Domain-Driven	Design:	Tackling	Complexity	in	the	Heart	of	Software,	Addison-Wesley.	
[Rich]	Richardson,	C.	2018.	Microservices	Patterns,	Manning.	
[Ris]	Rising,	L.	1998.	The	Pattern	Handbook.	Cambridge:	Cambridge	University	Press		
[Shan]	 Shanteau,	 J.	 2001.	 “What	 does	 it	 mean	when	 experts	 disagree?”	 in	 E.	 Salas	 &	 G.	 Klein	 (Eds.),	 Linking	 expertise	 and	 naturalistic	
decision	making	(p.	209–244).	Lawrence	Erlbaum	Associates	Publishers.	
[Wirf17]	Wirfs-Brock,	R.,	“Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?”	2017.	PLoP	2017,	Proceedings	of	the	
23rd	Conference	on	Pattern	Languages	of	Programs.	
[Wirf18]	Wirfs-Brock,	R.	“Traces,	Tracks,	and	Trails:	An	Exploration	of	How	We	Approach	Software	Design.”	2018.	PLoP	2018,	Proceedings	
of	the	24th	Conference	on	Pattern	languages	of	Programs.	
[Whit]	Whitehead,	A.	1929.	Process	and	Reality.	An	Essay	in	Cosmology.	Gifford	Lectures	Delivered	in	the	University	of	Edinburgh	During	the	
Session	1927–1928.	Macmillan,	New	York,	Cambridge	University	Press,	Cambridge	UK.	
[Wiki]	Wikipedia,	Blind	Men	and	an	Elephant.	Retrieved	from	https://en.wikipedia.org/wiki/Blind_men_and_an_elephant	
[Wlas]	Wlashin,	Scott.	2018.	Domain	Modeling	Made	Functional:	Tackle	Software	Complexity	with	Domain-Driven	Design	and	F#,	Pragmatic	
Bookshelf.	
[WWF]	World	Wild	Fund	for	Nature,	Asian	Elephants.	Retrieved	from		
https://wwf.panda.org/knowledge_hub/endangered_species/elephants/asian_elephants/	
[Youn]	Young,	Greg.	2017.	Versioning	in	an	Event-Sourced	System,	LeanPub.		
 	

	
	

Elephants, Patterns, and Heuristics					Page	-	15	

APPENDIX:	KEY	TAKEAWAYS	

A	design	heuristic	according	to	Billy	Vaughn	Koen	is	“anything	that	provides	a	plausible	aid	or	direction	in	the	
solution	of	a	problem	but	is	in	the	final	analysis	unjustified,	incapable	of	justification,	and	potentially	fallible.”	
	
Patterns	are	a	particularly	useful	form	of	design	heuristic.	
		
The	vast	majority	of	software	design	heuristics	have	not	been	written	in	pattern	form.	These	heuristics	exist	as	
tacit	knowledge	in	the	heads	of	designers	gained	from	experience.	Some	have	been	written	(mostly	informally)	
in	many	other	sources.	
	
The	 patterns	we	 observe	 in	 a	 software	 design	 are	much	 richer	 than	 any	 documentation	 or	 visual	 depiction	
could	ever	convey.	
	
A	pattern	description	is	just	one	view	of	the	design	phenomenon.	
	
Software	 patterns	 are	 particularly	 useful	 as	 they	 are	 drawn	 from	 direct	 experience	 and	 include	 useful	
information	 for	 the	 discerning	 designer—most	 notably	 the	 context	where	 the	 pattern	 has	 been	 found	 to	 be	
useful,	an	exemplary	solution,	as	well	as	some	tradeoffs	and	consequences	of	applying	it.	
	
The	standard	description	format	for	patterns	helps	us	to	ask	the	right	questions	about	a	good	design.	However,	
there	are	other	useful	ways	to	describe	the	phenomenon.		
	
Describing	the	forces	and	consequences	helps	us	to	understand	how	and	why	a	pattern	works.	This	is	different	
from	observing	superficial	features.	Cause	and	effect	are	given.	Such	claims	are	subject	to	empirical	evidence	of	
falsification.	
	
Only	 considering	 the	 superficial	 properties	 of	 a	 pattern	 is	 a	 dangerous	 path	 because	 developers	 may	 not	
understand	 the	 consequences	 of	 their	 design	 decisions.	 And	 they	 may	 be	 unaware	 of	 alternative	 design	
approaches	or	other	plausible	heuristics.	
	
A	pattern	 can	be	 represented	only	 indirectly;	 a	pattern	 is	 the	 emergent	wholeness	 that	 is	 common	 to	 all	 its	
exemplars.	It	cannot	be	found	in	one	single	example,	however	it	is	manifested	in	each	example.	
	
A	good	pattern	description	includes	a	model	as	one	representative	instance	of	the	pattern.	
	
Software	pattern	solutions	are	depicted	in	isolation	from	any	realistic	context.	
	
To	be	useful,	the	information	provided	in	a	pattern	description	needs	to	fit	prior	knowledge	and	preferences	of	
the	target	audience.	
	
The	patterns	are	out	there,	yes.	But	we	need	to	understand	that	we	only	know	parts	of	 the	whole	story.	Our	
ways	of	observing	and	analyzing	good	designs	are	 limited.	Never	assume	 that	 you	know	everything	about	 a	
pattern.	There	is	always	more	to	it.		
	
The	 best	 we	 can	 do	 is	 to	 tell	 a	 story	 about	 the	 patterns.	 Such	 a	 story	 unfolds	 the	 inner	 relations	 of	 the	
wholeness	of	a	good	design.	However,	 stories	are	never	complete.	Each	stories	has	holes.	Sometimes	we	are	
cutting	out	facts	for	convenience	or	to	make	the	parts	fit.		
	
A	 story	 can	 be	 re-told	 in	 many	 different	 ways,	 with	 many	 variations,	 different	 levels	 of	 details,	 and	
commentary.	 A	 story	 can	 also	 develop.	 Parts	 can	 change.	 New	 facts	 emerge.	 Elements	 that	 become	 obvious	
over	time	can	be	left	out.		
	

