
www.stqemagazine.com JULY/AUGUST 2003 STQE 49

Process & Techniques

I N F O T O G O
■ Effectively communicat-

ing a design involves
knowing what to say,
how best to say it, and
what to leave out.

■ By choosing what to
emphasize and using
progressive realization
techniques, you can
unfold a design gradu-
ally, in successively
more interesting parts.

DESIGNING SOFTWARE, PLANNING A PROJECT, OR FIGURING

out how to test complicated code can be a messy process.

At times, you need to tidy things up and present your

ideas to others. Francis Galton, a nineteenth-century ge-

neticist, remarked, “It often happens that after being
hard at work, and having arrived at results that are perfectly clear and satisfactory
to myself, when I try to express them… I feel that I must begin by putting myself
upon quite another intellectual plane. I have to translate my thoughts into a lan-
guage that does not run very evenly with them.” Similarly, if you want to effective-
ly communicate your ideas, you need to translate them into compelling stories.

Identify Your Storyline
efore launching into a detailed presentation of your design, consider
what you want to accomplish. What do you want to communicate?
What’s essential? What’s less important? Perhaps you want to describe
key collaborations between system components. Maybe you want to ex-
plain key aspects of your design to newcomers—the major subsystems,

their responsibilities, and their patterns of interaction. Perhaps you want to introduce
some central software objects and put them through their paces. Or maybe you want
to describe how your design supports core use cases; and once people get the gist of
these, you want to explain how your design handles exceptional situations. Perhaps
you want to justify why you made certain decisions and get critical feedback.

If your story is comprehensive, there will be many things to say. Often, even a
simple story has several key points. To start, list everything you want to discuss,
whether it is big or small or it overlaps with something already on your list. List
things you want to exclude, too.

B

OOnce upon
a Design

T RA N S L AT I N G T H E B E H AV I O R A N D S T RU C T U R E
O F YO U R S O F T WA R E I N TO C O M P E L L I N G S TO R I E S

B Y R E B E C C A W I R F S - B R O C K

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

Let’s say you are designing a function
that allows a bank account holder to
make automatic payments from his ac-
count. Here are some key points about
the design story you might want to cover:

■ describe how major domain objects re-
spond to a request to make a payment
from a customer’s account to a recog-
nized vendor

■ use a sequence diagram, but keep it
simple

■ point out calls to the backend banking
system that could be bottlenecks

■ start with a well-formed request (ig-
nore UI details)

■ relate the diagram to a “Make a Pay-
ment” use case (for which there are three
alternatives)

Don’t worry about how to organize your
story or the items on your list until you
have a large part of your story down.
Even if your story is brief, you won’t
know the best way to present it until
you’ve got the content in place and un-
derstand what your listeners or readers
need to learn.

Understand Your
Audience
f you are presenting your de-
sign to people just like you,
consider yourself lucky.
However, often your audi-
ence’s interests and back-

grounds differ. Some may know a lot and
don’t want to be bothered by hearing, yet
again, things they already know. Others
may need to understand design funda-
mentals before they can appreciate de-
tails. Some may want to know why you
made the choices you did. They want to
ask probing questions. After all, how can
they write comprehensive tests if they
don’t know where the complexities lie?
Still others may want only the punch
line—what you ended up with—and
don’t want to hear about how you made
the choices you did.

It’s tough to please a diverse audience.
You can’t develop one story that will hold
everyone’s attention. You may even need
to write several versions of the same story.
More likely, you’ll pick one intriguing
path through all the many ways you
could explain your design. Anticipate
that, at times, some will want more de-

tails while others’ interests will lag. Your
goal should be to cater to your primary
audience. Understand what they are likely
to find interesting, confusing, difficult, or
boring, and adjust your story accordingly.
Be sure to balance their needs with the
goals you have for telling your story.

While it is difficult to please everyone,
a good storyteller isn’t a defensive one.
Assume that your audience wants to hear
what you have to say and wants to fol-
low your lead. If a significant fraction of
your audience lacks basic information
that they need to understand the details
of your story, don’t leave them behind.
Prepare background material they can
read beforehand. Or give them an
overview in a separate presentation.
Things that are only moderately interest-
ing or are supplementary material for
most folks can always be relegated to a
separate handout.

Use Progressive
Realization
here are ways to begin sim-
ply and then lead to more in-
teresting or intricate views of
your design. Landscape ar-
chitects use the principle of

progressive realization to design linked
scenes. They create views that purposely
conceal things. Points of interest are re-
vealed only as you physically move
through the landscape. Architects move
people through the landscape in gradual,
interesting steps. You, too, can set up
your audience to comprehend things
more deeply, a little bit at a time. As you
move them through your design you can
successively reveal more details or pre-
sent different views of your design.

For example, when telling a high-level
design story, stick to the main points. Tell
it as if it were a news flash. Your audience
will want to hear the highlights before de-
ciding to invest more time in your story.
Grab their attention! Present those things
you want to emphasize first: What are the
central objects or components? What is
important about them? How do they col-
laborate? What’s controversial or novel
about your design approach? Reveal just
enough to engage your audience. If you
are writing a story, after setting the stage,
give your readers options to veer off in
one of several directions: to more detailed
views, or perhaps to explore how your
design handles exceptional conditions, or
to reveal the inner workings of complex
algorithms or more intricate collabora-
tions. Offer different paths through your

material. For each type of reader you can
develop a customized roadmap that sug-
gests an ordering of topics that they
would find most appropriate.

Progressive realization works best
when readers or listeners want to follow
your lead. Those seeking specific facts
won’t sit still for long. They don’t want
to be led anywhere. They want to forge
their own path. To counteract an impa-
tient audience, you might prepare a sec-
tion just for them that answers Frequent-
ly Asked Questions. Point them there
while you stick to your storyline.

Stories build to more dramatic conclu-
sions if important parts are told first, fol-
lowed by new material presented in novel
ways. For example, to describe how your
software handles specific exceptional cas-
es, start by defining the general strategies
your software will follow. Then illustrate
both a typical case and an exceptional
condition with illustrative sequence dia-
grams. And instead of ending with many
more mind-numbing diagrams, each illus-
trating how one particular exception is
handled, conclude with a chart that sum-
marizes each major exception, where it
may occur, and its effect on the user.

Understand What’s
Fundamental

undamentals are the basic
facts you need to know
about your design story be-
fore other details make
sense. If you know that most

of your audience won’t have the patience
to wade through fundamentals, don’t put
the fundamentals first. If you want to
reach out and present your design to oth-
er developers, testers, or architects for
critical feedback, don’t crowd your story
with basic information that they can find
out on their own. Building on fundamen-
tals is most appropriate when your goal
is to educate.

Even though you may not want to pre-
sent design fundamentals first, it is impor-
tant to know which aspects are more fun-
damental than others. This can help you
anticipate questions or present your story
in a more logical order. Here are some
rules of thumb for gauging which funda-
mentals should be covered first.

Things you cannot change are more
fundamental than things under your con-
trol. Descriptions of a problem are more
fundamental than descriptions of a solu-
tion. For example, use cases are more
fundamental than sequence diagrams that
describe how a system supports them.

F

T

I

50 STQE JULY/AUGUST 2003 www.stqemagazine.com

Process & Techniques

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

52 STQE JULY/AUGUST 2003 www.stqemagazine.com

Process & Techniques

Things (software objects, concepts,
physical entities) are more fundamental
than the relations between them, their at-
tributes, and their actions. Your audience
needs to understand software objects and
their general responsibilities before they
can comprehend structural relationships
or interaction details.

The normal case is more fundamental
than the exceptional one. A “happy
path” interaction sequence is more fun-
damental than an exception-filled one. If
you want to explain both, you should
separate the two.

Establish Scope,
Depth, and Tone

he scope of your design sto-
ry—how much territory you
cover—depends on your
goals. The depth of your sto-
ry—how detailed your ex-

planations are—depends on your reason
for telling your story and the needs of
your audience. Many stories have a nar-
row scope and limited depth. Often, sto-
ries are dashed off quickly to impart
knowledge or get reactions. Their tone is
informative, but brief. After all, you are
around to answer questions.

Design stories can be more or less in-
volved, depending on what needs to be
said, how many details you describe,
and how complex your software is. The
further along you are, the more you
know. So you can show and describe
more aspects of your design—if that’s
appropriate.

For example, there are many ways to
describe inter-object communications.
Here are a few:

■ a bird’s-eye view of your system show-
ing the overall architecture, major sub-
systems, and general paths of collabora-
tion

■ a view showing only the participants
in a specific collaboration (and not show-
ing any specific communications)

■ a specific sequence of interactions
among collaborators

■ an in-depth view that shows and ex-
plains how objects interact under excep-
tional conditions

■ a focused view that ignores some as-
pects in order to concentrate on a few,
specific collaborators and their interac-
tions

■ an implementation view that explicitly
describes precise message sequences

■ a generalized view that illustrates how
to adapt a particular collaboration

All these views have merit. You may
present one or more of them in the same
story, depending on what you need to
communicate. Your design can be ex-
plained at many different levels. Your
choice of level (or levels) should be
based on how much you know and how
much you want to reveal.

You can adjust the tone of your story
to be more or less formal, authoritative,
precise, comprehensive, and instructive.
Diagram choices, as well as word choic-
es, help set the tone. For example, UML
sequence diagrams are more formal
than UML collaboration diagrams. Both
serve nearly identical purposes. When
you want to throw out a rough design
idea for comment, you don’t want it to
look too polished. Not every part of
your story needs to be told in the same
way or in the same depth. Formal and
informal descriptions and diagrams all
have their place. (For more on design
presentation options, see this issue’s
StickyNotes at www.stqemagazine.
com.)

Get comfortable describing your de-
sign at different levels of abstraction.

Give Elements
Appropriate Emphasis

hings gain prominence by
their position and appear-
ance. This holds true for text
and drawings. To increase an
item’s emphasis:

■ put it first

■ surround it with space

■ put it in a bulleted list

■ mention it in multiple places

■ give it more room

■ repeat or restate it in different forms

You can consciously attempt to empha-
size or de-emphasize certain parts of your
design story. Central location, size, and
boldness add emphasis. Placing an object
in the middle of a collaboration diagram
gives it extra emphasis. UML active ob-
jects representing threads or processes
are drawn in bold, giving those objects
special emphasis. From the diagram in
Figure 1, we see that when Message-
Builder, a controlling object, is placed in
the center, it gets emphasized.

Certain things gain prominence by
their position and size, whether you like
it or not. Do your best to give design ele-
ments the appropriate emphasis. For ex-
ample, many UML tools increase the size
of a class to fit its name inside the box.
This may inadvertently draw attention to
unimportant classes with long names. I
might go so far as to use a smaller font to
display that lengthily named class, and
place it in the lower right-hand corner.
Sometimes emphasis will be misplaced,
however, despite your best intentions.

Your choice of a use case template can
emphasize certain elements. In Table 1,

T

T

/Selector /Presenter

:Message
Builder :Timer

:Message :Guesser

Figure 1: Placing the MessageBuilder

object in the center draws attention to it.

TEMPLATE 1 TEMPLATE 2

Use Case: Make a Payment Use Case: Make a Payment
Author: Rebecca Actor: Bank Customer
Last Revision Date: 7/11/03 Pre-condition: User has an active
Version: 0.4 account and is authorized to transfer
Status: Preliminary Review funds
Level: Summary . . .
. . . Author: Rebecca

. . .

Table 1: Choose a template that emphasizes the things that are important about the

use case.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

www.stqemagazine.com JULY/AUGUST 2003 STQE 53

Process & Techniques

the first template emphasizes version, au-
thor, and status. The second template
features an actor and a pre-condition.
Even though you may include authoring
information, nothing says you have to
place it first—unless that’s what you
want to emphasize.

Tell It, Draw It,
Describe It:

Some Guidelines
y now you’ve figured out
your goals and your main
storyline. You’ve analyzed
your audience and under-
stand what they need to

know and at what level of detail. You
also have some ideas on how to sequence
your presentation. It’s time to work on
polishing your story. Countless writers
have turned to Theodore Strunk and E.B.
White’s The Elements of Style for
straightforward advice. Strunk and
White’s guidelines can be applied to de-
sign stories, too—whether they are writ-
ten or drawn. Here’s how you can apply
the principles of good writing outlined in
Strunk and White to design stories.

Do not overwrite. Ten pictures are not
worth 10,000 words. Consider each
drawing’s purpose. If collaborations are
similar, show a typical case first, then
note how remaining ones differ. You can
always draw a representative diagram
that illustrates the typical case, and then
explain all the interesting exceptions us-
ing a chart or table.

Be aware of monotony setting in. Af-
ter seeing a bunch of nearly identical
drawings, even the most stalwart design-
er’s attention flags. To hold attention,
shift their focus. For example, add com-
mentary that explicitly calls out some de-
tails. Or point out that the next five dia-
grams are similar, so all but the most
eager designer can skip them in good
conscience.

Omit needless words. Stop short of
telling everything. Keep explanations to
the point. Avoid clutter when writing.
Don’t start a discussion with metatext—
text that describes the text that follows.
Don’t pile on extra words or invent
jargon; use simple language. Don’t blind-
ly fill in the blanks of a heavy-handed
template.

You can also keep drawings simple
without oversimplifying. Visual equiva-
lents of “needless words” on a collabora-
tion or sequence diagram include showing

■ return values

■ internal algorithmic details

■ details of caching and lazy initialization

■ object creation and destruction

Sometimes these details are important. If
so, take exception to this guideline. Most
of the time, however, these details just add
clutter. Show return values only when they
affect or alter the message flow. Or if you
can’t see how one object could possibly
collaborate with another, show where it
was returned. Omit details of how objects
do low-level tasks. Stop short of explain-
ing how preexisting objects work. De-
scribe only how your objects use them.

Revise and rewrite. If people don’t “get
it,” try telling them less. A designer I
knew had to draw two views showing
the same collaboration in order to com-
municate her design. One view omitted
the interface details; the other included
them. Some developers wanted to know
what interfaces to use. Others, who only
wanted to know how their parts of the
system were activated, didn’t want to see
these details. She was delighted that by
telling less (to the second group) she was
able to communicate more.

The best way to “see” isn’t always
with a diagram. Consider complex algo-
rithms. It’s hard enough to figure out that
sorting is going on by reading a sequence
diagram, let alone discriminate the key
aspects of a sort algorithm. A sequence
of messages doesn’t illustrate any side ef-
fects. You can’t see what happens when
an object is added to a hash table or
when a buffer overflows. Diagrams can’t
communicate everything. You can always
use words, pseudo-code, code, Backus-
Naur Form grammar, decision tables,
state tables, or storyboards to emphasize
certain aspects of your design.

Do not overstate. Don’t tell more than
what you believe at any given point. For
example, don’t dress up a collaboration
story with speculation. If you have only
worked out general paths of collabora-
tion, don’t show specific messages. If you
know messages, but not arguments, leave
them out. Be as specific as you can, but
don’t state more than you will feel com-
fortable defending in a review. Use UML
when you want to be precise, and rough
sketches when you want to convey the
gist of your design.

Extra precision can illuminate, but it
can constrain, too. For example, on a
collaboration diagram, a straight line,
called a link, establishes a relationship
between two collaborators. Are two
linked objects both sending messages to
each other? Probably the collaboration is
only one-way. To make this perfectly
clear, you can put a visibility arrow at the
end of the link pointing to the object
whose services are called upon. But if
you add visibility arrows to some links,
people expect them everywhere. What if
you want to leave that decision open? If
you add extra precision in some places
and not in others, people will draw their
own conclusions.

As a general principle, don’t add a de-
tail unless it adds value to your story. If
you can get away with omitting spurious
details, do so. For example, if you are de-
scribing the public interfaces to classes,
you need not describe their attributes.
Their inclusion in any diagram is always
optional. Nothing requires that you in-
clude every detail. Your goal is to com-
municate the important aspects of your
design. The more precision you add, the
more difficulty you will have keeping
your design stories accurate (and surpris-
ingly, the more open they will be to mis-
interpretation).

Be clear. If you choose the right form of
expression, your design will be more un-
derstandable. My colleague Alan McKean
is great at creating “big picture” diagrams
that are readily understood by almost
everyone. For instance, contrast Figure 2
(on page 54), which characterizes the
points of flexibility in an application that
enables a severely disabled person to com-
municate, with the UML diagram in Fig-
ure 3 illustrating the same points. Figure
3, while explicitly calling out classes and
flexible interfaces, only adds value to
those interested in object design details.

For example, you can make message
ordering more clear by drawing a UML
sequence diagram instead of a collabora-
tion diagram. You can annotate it to
show timing, branching, looping, return
values, and many other things—if these
things bring clarity to your design. If they
cause confusion, perhaps you need to
add a running commentary.

To improve legibility, limit the num-
ber of objects and messages on a diagram
to twenty-five or fewer messages between
limited numbers of participants (ten ob-
jects or fewer). Or, using a collaboration
diagram, you can organize objects ac-

B

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

54 STQE JULY/AUGUST 2003 www.stqemagazine.com

Process & Techniques

cording to their positions in a layered ar-
chitecture. This lets you see that mes-
sages follow a layered communication
pattern: flowing either between objects in
a given layer or from an object in a given
layer to objects in adjacent layers.

Make sure the reader knows who is
speaking. Don’t change your point of
view or add new voices to your discus-
sion. If you are explaining how subsys-
tems collaborate, don’t drop down two
levels and show objects inside those sub-

systems collaborating with objects from
a standard library.

Parenthetical comments and notes are
often spoken with a different voice and
tone. When you point out things of inter-
est too often (note: please ignore this
comment), it breaks concentration. Too
many parenthetical comments, caution-
ary notes in text, or notes on UML dia-
grams convince your readers that you
speak hesitantly. Use these devices only
when you really have something impor-
tant to say and you want it to stand out.

Do not affect a breezy manner. It isn’t
appropriate to leave things understated,
undrawn, or unexplained. CRC cards
are too breezy if you want to explain an
interaction sequence. Don’t arbitrarily
limit your diagrams. Stick with your sto-
ry. If a diagram becomes too complex,
you can break it into smaller sub-
diagrams. UML lets you draw a dan-
gling message arrow on one diagram
(meaning the details aren’t shown there)
that can lead to a hanging message ar-
row in another diagram.

Conclusions
lthough your goal is proba-
bly not to become a talented
writer or visual artist, as a
software developer, manager,
or tester, you can apply

Strunk and White’s writing advice to
telling your stories. An accomplished
communicator uses diagrams as well as
word choices to set the tone. You can get
your ideas across more effectively and
compactly by developing a storyline and
presenting it using emphasis and progres-
sive realization techniques. And even
though you may be constrained by pre-
existing templates and existing documen-
tation standards, you now know how to
cut to the essence of your story. Say what
you want to say, decide what deserves
special emphasis, include the right de-
tails, and know when to stop. STQE

Rebecca Wirfs-Brock (rebecca@wirfs-
brock.com) has pioneered many well-
known object-oriented design techniques
including responsibility-driven design, ob-
ject role stereotypes, and the two-column
form of use cases. This article is based on
the chapter “Describing Collaborations”
in the new book that she co-authored
with Alan McKean, Object Design: Roles,
Responsibilities, and Collaborations,
published by Addison-Wesley in 2003.

A

Note: This is really, really important.
Keep notes to 2% or less of what you
are saying, unless you like writing
stuff that nobody reads.

CommandNoGuess

Space Destination

Letter Word Sentence

Button

EyeSwitch

<<interface>>

Guess

Display

SpeakerDLL

Timer

Alphabet Vocabulary AddressBook

Sentence
Dictionary

<<interface>>

Selector
<<interface>>

Presenter

<<coordinator>>

MessageBuilder

<<coordinator>>

Guesser

<<interface>>

Bidder
<<abstract>>

GuessDictionary

different Selectors and Presenters are plugged in
to present guesses to different users

Guesser collaborates with different
kinds of objects, but it views them all
as Bidders

GuessDictionary provides
common algorithm for load()

subclasses define
the way that they
parse their data
during load()

extend the application by adding new
types of Bidders and Guesses

many classes
realize the Guess
interface

control utility classes
make control style
consistent

Figure 3: Choose complex diagrams such as this one for those interested in the design

details.

hooks. . .areas where
variations occur

selection varies
with user’s abilities

decisions vary
according to
selection and state

guessing algorithm
varies for each
type of guess

data formats of
guesses vary

storage locations
of guesses vary

presentation varies
with user’s abilities

pacing varies for
each guess

message delivery
strategies vary

destination formats
vary

Interfacing
with the user

Coordination Timing

Guessing Message
delivery

I/O

Figure 2: Use big-picture diagrams to convey information that is easy to understand.

STQE magazine is produced by
Software Quality Engineering.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

