
 

© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating 

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. 

 
For more information, please see www.ieee.org/web/publications/rights/index.html. 

 

 
www.computer.org/software 

 
 
 
 
 

 
 
 
 
 

Principles in Practice 

 
Rebecca J. Wirfs-Brock 

 
Vol. 26, No. 4 

July/August 2009 
 
 
 
 
 
 
 
 
 
 

This material is presented to ensure timely dissemination of scholarly and technical work. 
Copyright and all rights therein are retained by authors or by other copyright holders. All 

persons copying this information are expected to adhere to the terms and constraints 
invoked by each author's copyright. In most cases, these works may not be reposted 

without the explicit permission of the copyright holder. 
 

 



0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0  ©  2 0 0 9  I E E E  July/August 2009   I E E E  S O F T W A R E  11

E d i t o r :  R e b e c c a  J .  W i r f s - B r o c k   W i r f s - B r o c k  A s s o c i a t e s   r e b e c c a @ w i r f s - b r o c k . c o m

design

O n what do you base your design deci-
sions—established conventions, past ex-
perience, or principles? Most software de-
signers are pragmatic: if an approach suits 
the problem at hand, we use it. Standards 
and conventions come and go and change. 

When our team adopts them, we try to follow 
them. Although committed to design quality, we 

can’t always articulate guiding 
principles that underlie what 
we accept as good practice. We 
aren’t die-hard fanatics who live 
or die by a rigid set of principles. 
Yet we’d like to know reasonable 
design heuristics and when to ap-
ply them.

When I !rst started pro-
gramming in Smalltalk, I was 
awestruck by the programming 

prowess of those who seemed to have perfected ob-
ject thinking. I felt at a distinct disadvantage, hav-
ing just spent two years programming in assembly 
language. I observed experienced Smalltalk pro-
grammers making major revisions quickly. How 
did they manage to make change seem so effort-
less? What tricks would I have to learn to become a 
good Smalltalk designer?

After much thinking and observation, and some 
experimentation, I came up with three principles 
that seemed to underlie many of those experts’ 
decisions:

Distribute behavior among objects (rather than  
concentrate it into a single controlling object).

Preserve design "exibility by hiding implemen- 
tation details.
De!ne abstractions and interfaces !rst (before  
focusing on data and coding details).

They were also doing many other things, but 
those principles seemed fundamental. But they 
were fairly general, too. They didn’t tell me when 
a particular design choice was better than another 
so much as suggest what to consider as I worked 
through my design. They also gave me a set of cri-
teria to evaluate my work: Is this class doing too 
much? Are its implementation details encapsulated? 
Does it represent a cohesive set of behaviors, rather 
than a grab bag of functionality?

Putting Principles to the Test
Robert Martin, in the best-selling book Ag-
ile Software Development: Principles, Patterns, 
and Practices (Prentice Hall, 2003), collected and 
named what he considers !ve fundamental design 
principles:

The single responsibility principle (SRP): A  
class should have only one reason to change.
The open-closed principle (OCP): Extending a  
class shouldn’t require modifying that class.
The Liskov substitution principle (LSP): De- 
rived classes should be substitutable for their 
superclasses.
The interface segregation principle (ISP): A  
class’s clients shouldn’t be forced to depend on 
interfaces they don’t use.
The dependency-inversion principle (DIP):   

Rebecca J. Wirfs-Brock

Whenever two good people argue over principles, they are both right.—Marie von Ebner-Eschenbach

Principles in Practice



12 I E E E  S O F T W A R E    w w w . c o m p u t e r . o r g / s o f t w a r e

DESIGN

Abstractions shouldn’t depend on 
details. Details should depend on 
abstractions.

According to Robert, the idea for de!n-
ing software design principles came from 
his appreciation of science: “I had spent a 
lot of time studying physics and astronomy, 
and in those disciplines you !nd principles 
like the Heisenberg uncertainty principle 
or the polyexclusion principle, and so I 
rather like the idea of three words, with the 
last word being ‘principle.’” (The podcast 
with this quote is at www.hanselminutes. 
com/dafault.aspx?showID-163; the tran-
script is at http://perseus.franklins.net/
hanselminutes_0145.pdf.)

One de!nition of “principle” I like is, 
“an adopted rule or method for applica-
tion in action” (http://dictionary.reference.
com). A good design principle should help 
generate ideas and enable you to think 
through design implications. Most soft-
ware design principles and practices tend 
to be rules of thumb rather than hard-and-
fast rules. And therein lies the challenge: to 
!nd them useful, you must try them out.

Questioning the SRP
When I looked more closely, most of Rob-
ert’s principles rang true with my own ex-
perience. Sure, I found cases where they 
simply didn’t seem to apply. But it’s up to 
me to see where (and whether) any princi-
ple !ts. A principle isn’t a rigid design rule. 
Like a design pattern, it’s something that 
you apply in context.

But the principle I initially had the most 
trouble !nding use for was the SRP. I think 
of a class as having a single purpose, collect-
ing together a set of related responsibilities. 
In the context of the SRP, responsibility 
represents a “reason for a class to change.” 
That is quite different from responsibility- 
driven design, where a responsibility is an 
obligation to perform a task or know cer-
tain information. Robert and I were mean-
ing totally different things when we used 
the word “responsibility.” Once I under-
stood that difference, I could go on to ex-
plore all that this principle implied.

A class should have only one reason to 
change. Classes, if designed right, support 
a certain degree of variability. Instances 
don’t have to have identical behavior. They 
support the same responsibilities, but de-
pending on their current state, they might 

react quite differently. So what kind of 
change would force me to refactor some 
behavior into a new class?

Should something that varies always 
be factored into another distinct abstrac-
tion? My !rst worry was that, if carried 
to extremes, the SRP would produce a 
design !lled with classes that represented 
too many tiny variations on a common 
theme. I don’t consider that good design. 
But Robert didn’t imply that was good, ei-
ther. He took care in his writing to explain 
that you should factor responsibilities into 
different classes only if there are require-
ments causing them to change. He didn’t 
recommend pulling out variations into 
tiny classes (although someone, without 
thinking through the consequences, might 
do just that).

Instead, he suggested you invent new 
abstractions to represent the thing that 
varies and declare an interface so that 
any class can implement that responsibil-
ity, regardless of inheritance. Robert also 
cautioned, “An axis of change is an axis 
of change only if the changes actually oc-
cur. It is not wise to apply the SRP, or any 
other principle for that matter, if there is 
no symptom.” Generally, I agree.

It’s a Judgment Call
So, the SRP provides a hint about when 
to create an abstraction. Actually, it’s just 
another way of saying, “Keep a class’s 
behaviors cohesive.” I don’t always form 
new classes to support individual behav-
iors. Nor should I be forced to. The SRP 
isn’t a prescription, just general advice on 

what to do when a class’s behavior isn’t co-
hesive enough. I should balance the cost of 
creating that abstraction with supporting it 
more simply.

Michael Feathers, in Working Effec-
tively with Legacy Code (Prentice Hall, 
2005), points out two ways the SRP can be 
violated:

at the interface level, when a class pres- 
ents an interface that makes it appear 
responsible for many things, and
at the implementation level, when it re- 
ally does implement many things.

If a class implements responsibilities by 
delegating work to other classes, it’s a fa-
çade—providing an interface to a number 
of smaller classes. This might be okay and 
exactly what you intend—to hide those 
classes performing speci!c responsibilities 
from others.

On the other hand, if a class directly 
implements many diverse responsibilities, 
this is an implementation violation of the 
SRP that you should resolve by modifying 
your design. Also, a class that provides an 
interface to a related set of responsibilities 
is well designed only if its implementation 
isn’t overly complex or tangled. Only by 
looking at the code and variable de!nitions 
will you know whether there aren’t other 
problems. Both the interface and the imple-
mentation need examining.

S o what makes for a good software 
design principle? Echoing the senti-
ments of the military strategist Carl 

von Clausewitz, “Principles and rules are 
intended to provide a thinking man [or 
woman, in my case] with a frame of ref-
erence.” I !nd it refreshing to occasionally 
step back to deeply examine why one de-
sign option seems better than another. I get 
uneasy when tribal knowledge about “the 
way things work around here” or vague, 
hard-to-express sentiments are the only 
reasons for a particular decision. I guaran-
tee that if you discuss with your colleagues 
the nuanced reasons for making a particu-
lar design choice, you’ll learn more about 
putting design principles into practice.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock 
Associates. Contact her at rebecca@wirfs-brock.com; www.
wirfs-brock.com.

A good design principle 
should help generate 

ideas and enable  
you to think through 
design implications. 


