
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

Up-front Design

Rebecca J. Wirfs-Brock

Vol. 25, No. 4

July/August 2008

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

design

12	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

E d i t o r : R e b e c c a J . W i r f s - B r o c k n W i r f s - B r o c k A s s o c i a t e s n r e b e c c a @ w i r f s - b r o c k . c o m

Up-front Design
Rebecca J. Wirfs-Brock

It is better to sleep on things beforehand than lie awake about them afterwards. —Baltasar Gracian

T
here can be significant benefits in think-
ing through a design until you get it
“right enough” before launching into a
major development effort. When is up-
front design essential, and how can we
do it more effectively? No one likes wast-

ing time on pencil-and-paper design exercises
that bear no fruit.

Build one to learn from
One of those times when careful thinking and
preparation pay off is when you’re designing soft-

ware that breaks new ground.
While our software engineering
team was busy completing our
first Smalltalk product, a hard-
ware engineer in the research
labs developed a color-hardware
prototype. He also hacked the
Smalltalk programming envi-
ronment to demonstrate how his
color hardware worked.

After several of us took a
closer look, it was clear that his software led to
more questions than answers. So, three of us spent
a couple of months hashing out our design ideas
for adding color to Smalltalk. No one had done
color BitBlt graphics before, no one knew what it
would take to enhance the existing Smalltalk sys-
tem to support color, and no one had developed
classes that modeled different color representation
schemes. We also wanted the existing Smalltalk
applications to run on the new platform without
change. We were breaking a lot of new ground!
Our management was easily convinced that we

needed some up-front time to think about these is-
sues before bringing others on board. We did our
design thinking mostly locked in a room. We ar-
gued, sketched, waved our hands, took notes, and
wrote modest amounts of simulation code. Al-
though many details remained to be worked out
after our intense design flurry, when we came out
of that room, we felt confident enough to ask for
more resources.

That up-front thinking let us concentrate on
implementation concerns and practicalities in-
stead of forcing innovations. Our time-crunched
project involved a lot of hard work but no major
design surprises.

Why did this up-front design effort pay off
when many attempts fail? We were experienced
developers who passionately cared about the prob-
lem. But I don’t think that was as important as our
tactics. We didn’t try to flesh out every detail. In-
stead, we concentrated on a few key design areas
and dug deep. We wouldn’t let go until we came
to working agreements (did I mention we argued a
lot?). Two of us were experienced Smalltalk appli-
cation developers. We were our own best, demand-
ing customers. Management set limits. We were
given freedom to explore options but felt pressure
to produce results.

A more incremental approach would have
been to use the prototype as the basis for evolv-
ing our design. But fortunately, the hardware en-
gineer was open about his code’s limits, and man-
agement trusted our judgment. They recognized
our design team needed time to think—setting us
loose to “tweak” a prototype into an innovative
product would have been too risky.

	 July/August 2008 I E E E S o f t w a r E 	 13

Design

Prototype to build confidence
On another project, we spent four months prov-
ing a new design approach for a system that co-
ordinated work between telecommunications
billing, provisioning, and order-taking applica-
tions. Our up-front thinking led us to develop
an architecture based on a set of key design de-
cisions. We described those decisions in a small
document and implemented a prototype that
demonstrated our design. Whereas the work-
ing prototype dazzled the project’s stakehold-
ers, what was important to us as a design team
was that we’d proven our design ideas. Our pro-
totype wasn’t just a slick demo. Our up-front
design effort gave us confidence that our design
would let us predictably integrate new function-
ality and vendor systems.

In The Pragmatic Programmer (Addison
Wesley 1999), Andy Hunt and Dave Thomas
suggest that small, focused “tracer bullet”-style
investigations are appropriate when you want
to build, observe, and quickly fix your design.
Tracer bullets illustrate a thin slice of end-to-end
functionality. Implementing a thin slice lets you
learn from small mistakes before they become
big disasters.

Demonstrate progress
Even though your design might be simmering
quite nicely, your progress might be intangible
to others. Find meaningful ways to show oth-
ers what you’ve been thinking about (rather than
only talking or writing about your design). Give
them a glimpse of what you’ve been doing. En-
sure that your efforts are recognized and appreci-
ated and that indeed you’re working on the right
things. Pulling off demonstrations, however, can
be challenging—especially if you’re designing
something that doesn’t naturally lend itself to vi-
sual representation.

I worked with a business architect who was a
master at visualizing complex concepts and algo-
rithms. Give him an afternoon, and he’d concoct
a few slides that really told our story! Known as
a skilled communicator, he’d jokingly start any
presentation with Katsushika Hokusai’s paint-
ing Red Fuji. Hokusai is known for painting 36
views of Mt. Fuji. Here was yet another view
of our system. Such depictions (whether techni-
cally accurate or not) became important project
mementos.

While I admire Hokusai’s skill, I don’t believe
that our design illustrations require rare or ex-
ceptional talent. To be effective, they do require
that we distill the essence of our work—whether
it consists of code snippets, design drawings, ani-
mated storyboards, or concept illustrations—and

illuminate both our ideas and thought process.
Those who don’t share our design context need to
understand what it is that we think is important.

Develop a design rhythm
On another large enterprise application, the proj-
ect team delivered feature releases two to three
times a year. If a feature required innovation or
investigation, they slotted it into a separate “de-
sign” track. Design track projects were moni-
tored and given a limited time to be proven ready
(or not) for prime time. Once proven, they were
merged into the ongoing development stream.
Some design projects never made it out of the
design track for technical, political, or business
reasons. Although not every worthy design proj-
ect succeeded, a single design failure didn’t drag
down mainstream development.

How can we ensure that we strike the right bal-
ance between thinking, doing, and learning? One
way is to develop a rhythm that lets design inves-
tigations get just enough ahead of development so
that risks are mitigated. Lynn Miller (“Case Study
of Customer Input for a Successful Product,”
Proc. Agile Conf. 2005, IEEE Press, pp. 225–234)
reports how she wove user-experience design
into agile development. Rather than working out
all the user-experience design before the project
launched, she staged it in small two- to four-week
sprints. Each of these sprints preceded software
development sprints by one iteration. During a
user-experience design cycle, designers conducted
customer surveys, did contextual inquiry, and
tested low-fidelity prototypes. Once designed, the
user-experience requirements fed into the next de-
velopment sprint.

W hen you’re building something new, risky,
or expensive, it might seem obvious that
up-front thinking and experimentation are

essential. But these days, some developers shy
away from even suggesting that a project might
need up-front design and experimentation. They
equate any up-front work with “big design up
front” (BDUF) and totally wasted effort. Up-
front design needn’t be wasteful if you develop a
design rhythm that balances thinking, learning,
and doing. You’ll build confidence and sleep bet-
ter at night.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock Associates.
Contact her at rebecca@wirfs-brock.com; www.wirfs-brock.com.

Find meaningful
ways to show
others what
you’ve been

thinking about
(rather than
only talking

or writing about
your design).

