
Lambda-based	control	abstractions	using	break	and	continue	
Allen	Wirfs-Brock	
March	15,	2012	
	
The	is	growing	interest	in	adding	support	to	ECMAScript	for	a	construct	that	is	
sometimes	called	a	“block	lambda”.	A	block	lambda	is	the	definition	of	functions	that	
adhere	to	Tennent’s	Correspondence	principle	which	can	be	loosely	paraphrased	as:	
	
Wrapping	a	block	of	code	in	a	function	that	is	immediate	called	should	produce	the	
same	effect	as	directly	executing	the	original	bock	of	code.	
	
Various	syntactic	forms	have	been	proposed	for	expressing	block	lambdas	in	
ECMAScript.		The	pros	and	cons	of	the	various	alternative	syntaxes	for	block	
lambdas	is	not	the	concern	of	this	note.		In	order	to	remain	neutral	with	regard	to	
the	syntax	debate,	this	note	uses	a	hypothetical	syntax	that	is	not	under	
considerations.		Within	this	note,	block	lambdas	are	written	using	this	syntactic	
production:	
	

BlockLambda	:	λ(FormalParameterList	opt)	{	StatementList	opt	}	
	
Using	appropriately	specified	block	lambdas	and	TCP	we	can	take	a	function	like	
this:	
	
 function foo() {
 for (let v of a) {
 if (v == value1) continue;
 if (v == value2) break;
 if (v == value3) return;
 doSomethingWith(v);
 }
 };
	
and	convert	it	to	something	like:	
	
 function foo() {
 for (let v of a) λ(){
 if (v == value1) continue;
 if (v == value2) break;
 if (v == value3) return;
 doSomethingWith(v);
 }() //ß immediate call of block lambda
 };
	
and	everything	will	continue	to	work	exactly	the	same.	In	particular,	in	this	situation	
the	continue,	break,	and	return	statements	will	behave	exactly	the	same	whether	
or	not	they	are	enclosed	in	the	block	lambda.	
	
However,	what	if	we	want	to	replace	the	for-of	loop	in	the	above	example	with	use	
of	the	Array	forEach	method	like	this:	

 function foo() {
 a.forEach(λ(v) {
 if (v == value1) continue;
 if (v == value2) break;
 if (v == value3) return;
 doSomethingWith(v);
 });
 }

As	block	lambdas	have	so	far	been	proposed,	this	would	not	work.		The	return	
statement	is	not	a	problem,	as	it	has	been	defined	to	always	return	from	the	closest	
enclosing	non	block	lambda	function.		In	this	case	that	is	the	function	foo.		
	
However,	the	break	and	continue	statements	are	problematic.		Using	the	semantics	
of	break	and	continue	defined	by	ES5.1,	this	version	of	the	code	would	produce	an	
early	syntax	error	because	a	continue	statement		is	only	allowed	to	occur	nested	
within	the	body	of	an	IterationStatement	and	a	break	statement		(without	a	target	
label)	is	only	allow	to	occur	nested	within	the	body	of	an	IterationStatement	or	a	
SwitchStatement.		
	
One	of	the	primary	motivations	for	adding	block	lambda	to	ES	is	to	provide	a	
facilities	that	allows	ES	programmer	to	define	control	abstraction	that	have	
equivalent	power	to	the	languages	built-in	control	statements.		Block	lambdas	can	
supply	the	bodies	of	such	control	abstraction	when	they	are	passed	as	arguments	to	
the	functions	that	represent	the	abstraction.	But,	if	we	only	have	block	lambdas	as	
defined	thus	far,	such	control	abstractions	would	still	be	second	class	citizens	in	
comparison	to	the	built-in	control	statements	because	the	continue	and	break	
statements	could	not	be	used	to	control	iteration.	
	
In	ES5.1	iteration	statements	(by	which	we	really	mean	IterationStatement	or	
SwitchStatement)	each	define	specific	semantics	for	what	to	do	when	a	continue	or	
break	occurs	within	the	body	of	the	statement.		The	specific	semantics	actually	
varies	slightly	depending	upon	which	specific	kind	of	iteration	statement	is	
involved.		The	semantics	are	defined	in	the	ES5.1	specification	using	the	concept	of	
Completion	values.		Completion	values	propagate	from	a	control	transfer	point	(a	
return,	throw,	break,	or	continue	statement)	to	a	dynamically		(and	often	
lexically)	enclosing	context	that	intercepts	the	control	transfer.	Completion	values	
identify	the	type	of	transfer	(return,	break,	etc.).		Completion	values	essentially	
allow	iteration	statements	to	define	the	behavior	of	continue	and	break	statements	
that	occur	within	their	bodies.		For	user	defined	looping	abstractions	to	have	
comparable	behavior	they	will	also	have	to	be	able	to	define	their	own	semantics	for	
any	continue	or	break	that	occurs	within	their	block	lambda	provided	“bodies”.	
	
However	not	all	control	abstractions	need	or	want	to	control	the	handling	of	
continue	and	break.		Consider	that	somebody	might	have	a	reason	to	construct	a	
control	abstraction	function	that	was	equivalent	to	an	if	statement:	
	

	
	
 function ifElse(predicate, thenClause, elseClause) {
 if (predicate) return thenClause();
 else return elseClause();
 };
	
If	they	also	have	a	function	such	as	this:	
	
 function bar() {
 for (let v of a) {
 if (v == value1) continue;
 else break;
 }
 };
	
they	might	choose	to	refactor	it	to	use	their	ifElse	function:	
	
 function bar() {
 for (let v of a) {
 ifElse((v == value1), λ ()	{continue},
 λ (){break})
 };
	
In	this	case,	interception	of	the	break	and	continue	by	the	ifElse	function	would	
clearly	change	the	meaning	of	the	program	and	the	coder	of	ifElse	would	want	to	be	
sure	that	control/break	interception	did	not	occur.		Whether	or	not	a	control	
abstraction	handles	breaks	and	continues	needs	to	be	part	of	the	definition	of	the	
abstraction,	so	let’s	see	how	we	can	enable	the	implementers	to	make	that	decision.	
	
Consider	a	implementation	of		Array	forEach	as	it	might	be	defined	in		
ES5.1:	

Array.prototype.forEach = function(callBack, thisArg) {
 var index = 0;
 var value = undefined;
 while (index < this.length) {
 value = callBack.call(thisArg,this[index],index++,this);
 }
 return value; //return value from last iteration.
}

A	function	like	this	is	unable	to	manage	the	occurrence	of	a	break	or	continue	that	
is	executed	during	an	invocation	of	the	callback	function	because	it	has	no	visibility	
of	the	occurrence.		In	order	to	fully	emulate	a	built-in	iteration	statement	such	a	
function	needs	to	be	able	to	detect	the	occurrence	of	a	label-less	break	or	continue	
and	needs	to	be	able	to	specify	what	action	to	take	upon	such	an	occurrence.	There	
are	three	plausible	ways	this	might	be	accomplished:	

1. Label-less	break	and	continue	statements	could	be	respecified	to	throw	an	
exception	and	the	control	abstraction	function	could	catch	such	exception	
using	a	try-catch	statement:	

	
Array.prototype.forEach = function(callBack, thisArg) {
 var index = 0;
 var value = undefined;
 while (index < this.length) {
 try {
 value = callBack.call(thisArg,this[index],index++,this);
 } catch (e) {
 if (e.name == “break”) break; //from while loop
 if (e.name == ”continue”) continue //the while loop
 throw e; //rethrow unexpected exception
 }
 return value; //return value from last iteration.
}

2. The	callBack	function	could	be	invoked	in	a	special	manner	that	allows	the	
caller	to	parameterize	what	action	is	taken	if	an	label-less	break	or	continue	
occurs	within	the	function.		For	the	following	example,	assume	that	callCtl	is	
a	method	of	functions	that	is	just	like	the	call	method	except	that	it	takes	two	
additional	leading	arguments	which	are	functions	that	deal	with	break	and	
continue	conditions,	respectively.		

Array.prototype.forEach = function(callBack, thisArg) {
 var index = 0;
 var value = undefined;
 while (index < this.length) {
 value = callBack.callCtl(
 λ (){break}, //from while loop, if break occurs in callBack
 λ (){continue}, //the while loop, if continue in callBack
 thisArg, this[index], index++, this);
 }
 return value; //return value from last iteration.
}

3. The	callBack	function	could	be	invoked	in	a	special	manner	that	returns	a	
reified	Completion	value.			The	caller	could	check	the	completion	value	for	to	
see	if	a	break	or	continue	occurred	within	the	function	and	respond	
appropriately.		For	the	following	example,	assume	that	callCV	is	a	method	of	
functions	that	is	just	like	the	call	method	except	that	it	always	returns	an	
object	that	represents	a	Completion	value	object.		

Array.prototype.forEach = fn(callBack, thisArg) {
 var index = 0;
 var completion = {value: undefined];
 loop: while (index < this.length) {
 completion = callBack.callCV(thisArg,this[index],index++,this);
 switch (completion.kind) {
 case "break":
 break loop; //out of implementation while loop
 case "continue":
 default:
 continue loop; //next iteration, not really needed here
 }
 return completion.value; //return value from last itr completion

}

	
Of	these	three	approaches,	the	exception	based	scheme	seems	to	be	the	most	
potentially	problematic	and	error	prone	for	the	ES	programmer.		Because	ES	
exception	handling	is	untyped,	exception	handling	for	control	flow	may	need	to	be	
intermingled	with	exception	handling	for	other	purpose	and	break/continue	
exception	can	be	easily	missed	or	inadvertently	caught	introducing	hard	to	find	
bugs.	
	
The	other	two	approaches	are	essentially	duals	of	each	other	that	operate	upon	
opposite	sides	of	the	[[Call]]	interface.		Recall	that	the	ES5.1	[[Call]]	internal	method,	
after	evaluating	a	function,	takes	the	resulting	completion	value	produced	by	the	
code	and	for	normal	completions	converts	them	to	simple	values	that	returned	to	
the	caller	while	abrupt	completions	are	propagated	as	exceptions.		The	callCtl	
approach	essentially	parameterizes	the	[[Call]]	method	with	explicit	actions	to	take	
for	break	and	continue	abrupt	completions.	The	callCV	approach	takes	the	
responsibility	of	interpreting	certain	abrupt	completions	away	from	the	[[Call]]	
method	and	instead	reifies	the	Completion	value	as	an	ECMAScript	object	that	is	
returned	to	the	original	called.		It	is	then	the	caller’s	responsibility	to	decide	what	to	
do	with	break	and	continue	completions.		
	
Of	the	latter	two	approaches,	it	isn’t	immediately	clear	that	one	is	obviously	
preferable.		In	the	above	examples,	the	callCtl	approach	is	more	compact	and	
perhaps	easiest	to	read.		However,	in	the	callCV	approach		a	simple	one	line	if	
statement	could	replace	the	switch	statement	in	this	instance	and	a	simpler	version	
would	look	like	this:		
	
Array.prototype.forEach = fn(callBack, thisArg) {
 var index = 0;
 var completion = {value: undefined];
 while (index < this.length) {
 completion = callBack.callCV(thisArg,this[index],index++,this);
 if (completion.kind == “break”) break;
 }
 return completion.value; //return value from last iteration
}

At	least	for	this	abstraction,	the	simplified	callCV	version	probably	beats	the	callCtl	
approach	on	both	conciseness	and	clarity.	
	
There	may	also	be	performance	differences	between	the	approaches.		The	callCtl	
approach	requires	the	creation	of	two	block	lambdas	for	every	callCtl	that	is	
executed	(but	perhaps	an	optimizer	could	treat	them	as	loop	invariant	values)	and	
cross	frame		break/continue	escapes.	The	callCV	approach	requires	creation	of	the	
Completion	object	but	only	has	normal	LIFO	returns.		It	seems	plausible,	that	the	
callCV	approach	can	have	less	runtime	overhead	using	simpler	optimization	
techniques.		

	
	
	
	
	
	
Other	examples		(these	aren’t	complete	or	fully	worked	out)	
	
Collection.prototype.forEachAlternating = fn(callBack1, callBack2) {
 let first = true;
 let value = undefined;
 return this.forEach(λ(v) {
 value = (first?callBack1:callBack2).callCtl(
 λ() {break}, //break from forEach
 null, //do nothing for continue, just returns
 this, v);
 first = !first; //next iteration will use other callBack
 value;
 });
 }

	
	
Collection.prototype.forEachAlternating = fn(callBack1, callBack2) {
 let first = true;
 let completion = {value: undefined};
 return this.forEach(λ(v) {
 completion = (first?callBack1:callBack2).callCV(this, v);
 if (completion.kind is "break") break; //from forEacj
 first = !this; //next iteration will use other callback
 completion.value;
 });
}

	
	
Collection.prototype.cascade = fn(firstThis,...args) {
 let value = undefined;
 let lastValue = firstThis;
 return this.forEach(λ(f) {
 lastValue = f.applyCtl(
 λ() {break}, //break from forEach
 null, //do nothing for continue, just returns
 lastValue, args);
 first = !first; //next iteration will use other callBack
 lastValue;
 });
 }

FSM(
 0, λ() {c = nextChar(); n=0; continue with 1},
 1, λ() {if (isDigit(c)) {
 n=10*n+code(c)-code(‘0’);
 c = nextChar();
 continue with 1};

 else continue with 2},
 2, λ() {if (isWhiteSpace(c)) {

c = nextChar(); continue with 1},
[λ() { },
 λ() {if (this },
 λ() { }].do(2);

	

