A Declarative Model for Defining Smalltalk Programs

Allen Wirfs-Brock, Juanita Ewing, Harold Williams, Brian Wilkerson

Allen Wirfs-Brock
ParcPlace-Digitak Inc.
7585 SW Mohawk Street
Tualatin, Oregon 97063
Phone: 503-961-0800 x235
Fax: 503-691-2742
Email: dlen@parcplace.com

Abstract
Most programming languages have used declarative descriptions for describing programs.
Smalltalk has traditionally used an imperative description. In this paper we describe
Smalltalk’ s usage of the imperative model, and identify program maintenance and delivery
issues that arise from it. We then present a declarative alternative for describing Smalltalk
programs and show how the use of such a model addresses maintenance, ddlivery, and
portability problems encountered by Smalltalk programmers. This model of Smalltalk
programs has been used in the implementation of a commercia Smalltalk development
environment and is an integra part of the Smalltalk standard which is currently under

development by the X3J20 committee.

Copyright 1996 ParcPlace-Digitak Inc.

All Rights Reserved

Wirfs-Brock Declarative Smalltalk

1. Introduction

Smdlltalk programming has traditionally been performed through the imperative execution
of reflective Smalltalk expressons within a development environment. A Smalltalk
“program” is essentially an accumulation of side-effects upon the development
environment. There is no “objective’ description of what constitutes such a program. A
record of the sequence of expressions may be maintained but their actua effect is highly
dependent upon the initial state of al referenced entities within the development
environment. The problem is compounded because of the polymorphic nature of
Smaltak. The actuad operations performed by a Smaltalk expresson are only
determinable at the actua time of execution when polymorphic operations are resolved in
the context of actual objects.

This style of program definition is a source of significant program maintenance and
delivery problems for Smalltalk programmers. Once a program is created, it exists as an
extension of the development environment. The most basic problem is the inability to
actually identify which program elements are part of an application and which are part of
the development environment. This makes it difficult to extract an application from its
development environment for delivery, archival, transport, or even collaborative
development purposes. Even if a complete record is kept of the expressions used to create
the program, initial state dependencies may result in the inability to recreate the program

within a different version of a development environment.

Most other programming languages describe programs in a declarative manner. A
declarative program description is a sequence of declarations which define the program
elements in an objective manner, independent of a development environment context.
Declarative descriptions of programs permit them to be easily transported between

programmers and language implementations.

We have successfully adapted Smalltalk to use a declarative model of program definition.
The declarative version of Smalltalk preserves the essential characteristics of Smalltalk as
used by application programmers, but eiminates the principa source of Smalltalk’'s
maintenance, delivery, and portability deficiencies. This declarative model has been used as

the basis for a commercia Smalltalk development environment [Digitalk93, Parcplaced5]

Wirfs-Brock Declarative Smalltalk 2

and it has been adopted by the X3J20 committee for use in the Smalltalk standard [X3J20-

96] that is currently under devel opment.

This paper examines the problems that result from Smalltalk’s traditional usage of an
imperative model of program definition, and presents our aternative declarative model
that addresses these problems. We begin in Section 2 by explaining the differences
between declarative and imperative modeling techniques. Section 3 examines details of
how a program is imperatively defined in traditiona Smalltalk development environments.
We then link some well known problems in the areas of program maintenance and
application delivery to Smalltalk’s use of the imperative definition style. Section 4 shows
that a declarative definition style can be applied to Smalltalk without changing the
fundamental nature of Smalltalk programs. We present both an execution model and an
abstract syntax that supports a declarative model of specifying Smalltalk programs.
Section 5 presents the advantages of the declarative model and how it specifically
addresses the problems that were identified in Section 3. The use of reflection in the
imperative definition of Smalltalk programs has been of significant utility in the
implementation of Smalltalk development environments. In Section 6 we show that the
use of a declarative model does not preclude the use of reflection and actually offers
significant advantages to the implementors and users of a programming environment.
Experience with the use of the declarative model in commercial Smalltalk implementations
and the prospects for its use in an ANSI Smalltalk standard is described in Section 7.

Rdated work is described in Section 8. In Section 9 we draw some conclusions.

2. Imperative and Declarative Models

An imperative model is a description of an entity that consists of a set of commands
(operations, functions, "imperatives', etc.) that, when executed in sequence, will
reproduce the entity. Lisp and Smalltalk have traditionally used an imperative model for
describing programs. A program is described by a set of commands that will, when
executed, reconstruct the program. In traditional Smalltalk implementations the imperative
commands that create a program are executed in the same environment as the program
that is being created. The commands are expressed in terms of reflective operations upon

the data structures that implement the executable program.

A declarative modd is a description of an entity that consists of a set of existentia

statements that enumerate the distinguishing characteristics of the item. FORTRAN,
Wirfs-Brock Declarative Smalltalk 3

ALGOL, C, COBOL and most other programming languages use a declarative model for
describing programs'. A program is a set of declarations that define the procedures,
functions, variables, types, and other elements that make up the program. The declarations
for program elements express the characteristics of the elements in terms of abstractions
that are independent of the algorithms and data structures used to implement the language.
It is possible to fully understand the meaning of such a program by reading it. The reader
does not have to know anything about how the compiler works, the runtime

representation of variables, or even what computer will execute the program.

A declarative model describes an entity in terms of “what it iS’. An imperative model
would describe the same entity in terms of “how to build it”. For example, in the domain
of geometry an imperative description of a geometric element might be: “Place a pen at
the origin of the coordinate system; move the pen 5 units to the right; move the pen 5
units straight up; move the pen 5 units left; move the pen 5 units straight down.” The
declarative description of the same figure might be: “ A square with sides 5 units in length

with its lower |eft corner at the origin.”

This example illustrates many of the advantages of a declarative model over an imperative
model. With the declarative description the type of geometric figure is explicitly stated,
while with the imperative description the side-effects of executing the commands must be
examined in order to recognize the geometric figure. The imperative description
unnecessarily constrains the implementation. There are many different ways to create the
sguare as described in the declarative model, the choice is up to the implementation. There
isonly one way to draw the item from the imperative model. The declarative description is

also shorter and easier to modify.

3. Imperative Definition of Smalltalk Programs

Smadlltalk program construction has traditionaly been performed in the context of a
“virtua image” [Goldberg93]. A virtual image consists of a set of objects. These objects
include not only those that define a class library that is intended to be used and extended
by application programs, but also objects that implement the interactive Smalltalk

programming environment itself. In such an environment, a Smalltalk application program

! This should not be confused with the concept of “declarative programming languages’ such as Prolog
where the desired result of a computation is defined in a declarative manner. In this paper we are talking
about the declarative specification of imperative programs.

Wirfs-Brock Declarative Smalltalk 4

is constructed by directly or indirectly executing imperative Smalltalk expressions that
extend and modify the objects within the virtual image to include the classes and variables
necessary to implement the functionality of the program. Smalltalk does not include the
concept of a program as a distinct entity. In practice, a Smalltalk program is the state of a

virtual image when work is declared completed.

The image contains the objects that are the implementations of classes, global variables
and pools, but not the imperative expressions that created them. Therefore, to transfer a
program to another virtual image, it is necessary to synthesize and externalize expressions
that will recreate the program elements. However, the types of some program elements
may not be readily discernible by examining their implementation artifacts. For example, in
some implementations it is not possible to distinguish a pool from a globa variable whose
current value is a dictionary with strings for keys. More generdly, it is not possible to
synthesize the origina initidization expressions for globa variables. It is only possible to

produce expressions that reproduce their current values.

Lack of a program definition in traditiona Smalltalk environments leads to an undue
reliance on the virtual image. Images can become obsolete or broken. Because the
program is encoded in the image, the program is in danger of becoming inaccessible if the

image becomes outmoded or corrupt.

Smalltalk’s imperative program construction model also requires that the same virtua
image be used both for program creation and program delivery. This makesit very difficult
to support Stuations where the development must be performed in a computing

environment that is different from the target execution environment.

The imperative expressions that extend the virtual image into an application program are
either entered interactively using programming environment tools or read from an external
file. There are two primary tools used for interactively creating Smalltalk programs. a
browser and a workspace. A browser is used for defining classes and methods. A
workspace is used for composing expressions that define other language elements such as
globa variables and pools. Workspaces are also used to execute expressions that initialize

or test all or part of the program.

Using either a browser or a workspace, a class is created with the message

#subclassiinstanceV arableNames:classV ariableNames:pool Dictionaries.. This message, or

Wirfs-Brock Declarative Smalltalk 5

a variation of it, is sent to a pre-existing class object, the intended superclass. The side-
effect of the evaluation of such a message is to create a new global variable (named by the
argument of the “subclass” keyword) whose value is initialized to a new class object
which isitsalf an instance of a newly created metaclass object. It is sometimes difficult to
deal with the natural inconsistencies that may arise during the creation and editing of a
program. Because a class cannot be defined unless its superclass exists, hierarchical
forward references may not be supported, even though other types of forward references
may be tolerated by the development environment. It is also difficult to exchange the name

of aclass with the name of its superclass.

Additional state for the class object may be defined with a message to the metaclass
object. The message #instanceVariableNames:. is used to define class instance variables.
This message can only be sent after the successful creation of the class.

As an example, these expressions create a class named “ UlPalette’:

ApplicationModel subclass: #UIPalette

instanceVariableNames: 'activeSpecs toolName '
classVariableNames: 'ActiveSpecsList CurrentMode PaletteOffsets '
poolDictionaries: "!

UlPalette class

instanceVariableNames: 'selectlcon stickylcon !

The“!” isused in Smalltalk source files to separate expressions that must be independently
compiled and executed. Note that the first expression must be evaluated before the second
expression can be successfully compiled. Otherwise, the globa name “ UlPaette’ would
not be defined and the compilation would fail. This illustrates a basic problem with the
traditiona techniques used to externalize Smalltalk imperative program descriptions. The
imperative statements are Smalltalk message expressions directed to objects that are
referenced via global variables. Because of the polymorphism that is implicit in a message
send, the effect of an expression can only be known when it is actually evaluated. Thus the
validity of an imperative program description is dependent upon the environment within it

is executed.

After aclass has been created, methods may be defined for the class or metaclass through
the use of a sequence of messages. Each method requires the evaluation of severa
messages to compile the source code of the method into a CompiledMethod object and
the use of the message #compiledMethodAt:put: to actualy install it into the class or
metaclass.

Wirfs-Brock Declarative Smalltalk 6

Because of the complexity and verbose nature of these expressions a browser or file-in
reader [Krasner83] is typically used to automate this process. The browser automatically
invokes the method creation messages without the programmer having to explicitly type

them.

The expressions to define globa variables and pools have a similar form. Both involve
messages to “Smalltak”, a globa variable containing a dictionary that implements the
globa name space. Global variables and pools are represented as elements of this
dictionary and dictionary message protocol is used to define new globa variables and
pools. A globa variable is defined using a message such as:

Smalltalk at: #GlobalVariableName put: nil
A pooal is itsdf implemented as a Dictionary, so a pool is created using a sequence of

expressions such as.

Ipl

p := Dictionary new.

p at: ‘Red’ put: Color red.

p at: ‘Blue’ put: Color blue.

p at: ‘Green’ put: Color green.
Smalltalk at: #ColorConstants put: p

This sequence creates a pool containing three pool variables. Note that there is nothing
that explicitly identifies the entity that is being created as a variable pool. The programmer
must know that the language implementation uses instances of the class named Dictionary
with strings as keys to represent variable pools, and that the implementation is constrained
to use such dictionaries to represent variable pools. The above code would not be portable
to an implementation that implements pools using identity dictionaries or some other class
or that uses symbols as keys. This is an existing source of portability problems between

various Smalltalk implementations.

The implementation of the global name space and pools as dictionaries was a design
decison make by the origina Smdltalk implementors. There is nothing inherent in the
Smalltalk language that requires such an implementation and other designs with various
advantages are easy to imagine. However, the imperative definition style precludes the
designers of new Smaltak implementation from considering such adternatives if

compatability is agoal

Wirfs-Brock Declarative Smalltalk 7

Browsers typicaly do not include provisions for defining global variables, pools, or pool
variables. Instead the appropriate expressions to create them are usualy entered using a
workspace. Workspace expressions are aso used to initialize classes and to set the initia
values of global and pool variables. These expressions are often discarded and not
captured as a permanent part of the program. The manua and unreliable nature of the
initialization of Smalltalk programs leads to a number of program errors. Especidly
prevalent after reconstruction of a program in a new image are errors where program
elements have an initia value of nil instead of some other value as origindly intended by
the programmer. It is a'so common for a program execution to start with variablesinitially

Set to vaues that were unintentionally retained from a previous invocation.

4. Declarative Smalltalk Programs

Because of the issues identified above we have chosen to use a declarative model to define
Smalltalk programs. This requires the introduction of additional declarative abstractions to
the language for program elements that previousy had only been defined in terms of
implementation artifacts. All elements of a Smalltalk program are described existentialy at
alevel of abstraction that does not overly constrain implementations of the language. The
meaning of such a Smalltalk program should be understandable solely from the definition
of the program without actually executing a program construction processor or making

use of a pre-initialized execution environment.

Unlike our earlier efforts [Wirfs-Brock88], our goa is not to define a significantly
different diaect of the Smalltalk language that addresses a broad range of issues. Instead,
we reinterpret the process of defining Smalltalk programs from the perspective of a
declarative moddl while making only minima modifications to the existing core of the

language and without obsol eting existing implementations.

The use of a declarative specification modd has little direct impact upon Smaltalk
programmers. Even though Smalltak has traditionally been implemented using an
imperative program description model, the perception of most Smalltalk programmers is
of a declarative moddl. This is because Smalltalk programmers typically create and edit
programs using a browser that presents the classes that make up the program in a

declarative style.

Wirfs-Brock Declarative Smalltalk 8

The definition of the declarative model of Smalltalk programs consist of two parts. The
first part defines the computational model for Smalltalk programs. The second part defines
the declarative structure used to specify such computations. Taken together the two parts
are intended to define the semantics of a Smalltalk program, but avoid requiring any
specific implementation techniques. In addition, the use of reflection is not required in
order to define a Smalltalk program. The following are afew traditiona assumptions made
about the traditional execution environment for Smalltalk programs that are eliminated
using this declarative modd:

A system dictionary exists.

All classes, globals, and pools are in this system dictionary.
Pools are redlized using dictionaries.

Global and pool variables are represented as associations.
Each class has an associated metaclass.

Each classis an object.

Methods are objects.

Reflection is permitted and the definition of a program may dynamically change while
it executes.

Although our current implementation contradicts none of these assumptions, the goa of
the declarative model is to convert Smalltalk programmers to thinking about a program as
a specification of a computation and to lay the groundwork for language standardization

and further implementation evolution.

4.1 An Abstract Model of Smalltalk Execution

A Smalltalk program is a means for describing a dynamic computational process. This

section defines the computational environment for Smalltalk programs.

An object is a computational entity that is capable of responding to some set of messages
and that encapsulates some (possibly mutable) state. The set of messages is caled the
object’ s behavior.

An object’s behavior is a set of associations between message selectors and methods,
executable functions that are normally written in the Smalltalk programming language. A
message consists of a message selector and a set of arguments. Each argument is a
reference to an object. Program execution proceeds by sending messages to objects. An
object to which a message is directed is the receiver of the message. When an object
receives a message, the message selector of the message is used to select the

Wirfs-Brock Declarative Smalltalk 9

corresponding method from the object’s behavior. The method is subsequently evaluated.

It isan error if the object’s behavior does not include a corresponding selector.

A variable is a computationa entity that stores a reference (the value of the variable) to a
single object. The encapsulated state of an object consists of a set of variables. Such
variables are cdled instance variables. Normally each variable is bound to an associated
instance variable name”. The visible extent within a program of such a binding is called the

scope of the variable.

Variables are not objects. Messages are not sent to variables. The only operations a
program may perform upon a variable is to access its current value or to assign it a new
value. Other than instance variables, al variables are discrete execution environment
entities. These are known as discrete variables. Discrete variables are not objects. A
discrete variable whose scope is the entire program is a global variable. Other types of

discrete variables will be defined in subsequent sections.

The objects that exist during program execution consist of both statically created objects
and dynamically created objects. A statically created object is an individua object that is
explicitly defined by the Smalltalk program. Typicaly these are either literals or class
objects. Some staticaly created objects are bound to an object name within some scope.
Such objects are called named objects. The most commonly occurring named objects are

class objects.

Dynamically created objects are not individually defined by the program, instead they are
dynamically created as a side effect of method execution during the course of program
execution. Dynamically created objects do not have names. They are typically referenced

asthe value of avariable.

During program execution each object must continue to exist, preserving its state, for as
long as it is possible to execute any statement that may reference a variable having that

object asitsvaue.

Immediately prior to the execution of a Smalltalk program all statically created objects are
in their initial state as specified by the Smalltalk program definition and the value of all
discrete variables is undefined. Execution proceeds by sequentialy executing each

2An object may also encapsul ate anonymous variables called indexable instance variables.
Wirfs-Brock Declarative Smalltalk 10

initializer in the order specified by the program definition. The fina initializer should

initiate the primary computation of the program.

Rationale

The vast mgority of Smaltak application programs do not utilize the reflective
capabilities avallable in traditional Smalltalk implementations. For this reason, we view
such reflective capabilities as artifacts primarily used in the implementation of incremental
program facilities and do not mandate their presence in al Smaltalk implementations.
Given this view, the standard execution model only needs to define the entities that are
part of a programmer’s view of a running Smalltalk program. These are variables and
objects with state and behavior. Implementation artifacts such as compiled methods,

method dictionaries, or associations representing variables are excluded.

Class objects have no specia significance other than having names and having behaviors
and state distinct from that of their associated instance objects. Unlike classic Smalltalk
definitions [Goldberg83], they are not defined as being the containers or implementors of
thelr instances' behavior. The techniques used to implement the behavior of objectsis left
to the implementor. Finally, because classes are not specified as the implementors of

behavior, metaclasses are not needed to provide the behavior of class objects.

4.2 An Abstract Syntax for Smalltalk Programs

A Smadltak program is a means for describing a dynamic computational process. The
previous section defined the computational elements of such a process. This section
defines the means for describing such a process. It defines the abstract, macro level syntax
and static semantics of Smalltalk programs. The macro syntax is used to specify the
definitions of globally named entities that make up Smalltalk programs. These entities are
classes, global variables, and pools. This grammar is an adjunct to the traditional method
syntax which specifies the concrete syntax used for individua method definitions. The
gpecification of this syntax is abstract in that it defines the logica structure of program
elements but does not define a concrete syntax for representing this structure. There may

be various concrete syntaxes used for storage or interchange of programs.

For the sake of brevity, the static semantic definitions are excluded from this section. The

full specification may be found in the appendix to this paper.

Wirfs-Brock Declarative Smalltalk 11

Program Definition

The definition of a Smaltak program consists of a sequence of program element
definitions. The program element definitions define al discrete variables, statically created
objects and the behaviors of al objects that will take part in the computation. In addition,
the program definition specifies the order of dynamic initidization for al program

eements.

<Smalltalk program> ::= <program element>+

<program element> ::= <class definition> |
<global definition> |
<pool definition>

Rationale

Traditional Smalltalk systems consider a*“program” to be the state of a virtual image when
programming is completed. Program execution is the activation of any suspended
computational processes within such an image. Under the declarative model a programisa
set of definitions (declarations) of language elements along with a specification of the
order of initiaization. This allows us to precisdly describe and repeatably produce an

executable program whose computation will proceed in awell defined manner.

Traditionally, Smalltalk messages are used to reflectively create program elements. We
have replaced these messages with an abstract syntax that declaratively specifies the
existentia attributes of each program element. Although a concrete syntax that appears
similar to the traditional messages could be used, its interpretation would be declarative

not imperative.

Throughout this description of the declarative model of Smalltalk programs there are no
references to any of the traditiona Smalltalk program implementation artifacts. Pools and
the superclass are referenced by name rather than by the objects (Dictionaries and Classes)
that might implement them. Other components of a class, such as the methods, are also
specified such that references to implementation artifacts, such as CompiledMethods or

method dictionaries, are avoided.

Class Definition

A class definition defines the instance variable structure (the encapsulated state) and
behavior of objects. In addition, a class definition introduces a named object binding with

global scope. This name is called a class name and the associated object is a class object.

Wirfs-Brock Declarative Smalltalk 12

A class definition specifies the behavior and instance variable structure for both the
statically created class object and dynamically created instances of the class.

A class definition specifies two behaviors, the instance behavior and the class behavior.
The instance behavior is the behavior of any dynamicaly created instances of the class.
The class behavior is the behavior for class object. Through the use of inheritance, the
instance variable structure and behavior for both the class object and instance objects may
be specified as a refinement of that specified by another class definition known as its
superclass. Conversely, a class definition that inherits such structure or behavior is known

as asubclass of its superclass.

A class definition may also define discrete variables caled class variables whose scope is
all methods (either class or instance methods) defined as part of the class definition or as
part of the class definitions of any subclasses of the class definition. In addition a class
definition may specify the importation of pools. Any pool variables defined in such pools

are included in the scope of al methods defined as part of the class definition.

<class definition> ::=
<class name> [<superclass name>|
[<instance variables>]
[<class instance variables>]
[<class variables>]
[<imported pools>]
[<instance methods>]
[<class methods>]
[<classinitializer>]
<class name> ::= <global identifier>
<superclass name> ::= <global identifier>
<instance variables> ::= <local identifier>*
<classinstance variables> ::= <local identifier>*
<class variables> ::= <globa identifier>*
<imported pools> ::= <global identifier>*
<instance methods> ::= <method definition>*
<class methods> ::= <method definition>*
<classinitializer> ::= <expression sequence>

Rationale

Traditional Smalltalk systems consider a “class’ to be an object that defines and
implements the behavior of other objects [Goldberg83]. Because every object must be an
instance of some class, metaclasses are required to provide the class of the class object.
Under the declarative model, a “class definition” is a declarative element that is used to

specify the structure and behavior of objects. The declarative model provides for a
Wirfs-Brock Declarative Smalltalk 13

specification of object behavior without requiring any particular style of implementation.
In particular, it does not require that behavior be implemented in terms of runtime class
objects. This eliminates the requirement for metaclasses and al other reflective entities
from the abstract model of Smalltalk programs.

At runtime, classes are smply objects that respond to the class message protocol. It is an
implementation decision whether class objects are aso used to implement the behavior of
instance objects. Similarly, it is an implementation decision whether metaclasses are used

in the implementation of the behavior of class objects.

Global Definition
A globd variable definition is used to specify a discrete variable whose name scope
includes the entire program. The definition includes the Smalltalk code providing the initial

value of the variable.

<global definition> ::= <global variable name> [<variable initializer>]
<global name> ::= <global identifier>
<variable initidizer> ::= <expresson sequence>

Rationale

Traditiona Smadltak systems define a “globa variable’ as an association within a
dictionary which itself isa globa variable named Smalltalk. The value instance variable of
such associations is used as the storage cell for these variables. Dictionary messages are
used to reflectively add such associations and thereby create new global variables. Classes

and pools are also typically accessed via associationsin this dictionary.

The declarative model recognizes that a globa variable is smply a discrete storage cell
that exists during program execution. The mode is neutral concerning which of the many
possible implementation strategies for discrete variable cells might be used by an
implementation. There is no implicit or explicit requirement that the name of the variable
must be present during program execution nor that a variable is represented by an object.
It is aso not required that a runtime mechanism exist for using a string to access avariable

or for enumerating over all global variables.

Wirfs-Brock Declarative Smalltalk 14

Pool Definition

A pool definition introduces a global name binding for a variable pool and defines the

names of the discrete variables within the pool.

<pool definition> ::= <pool nhame> <pool variable definition>*

<pool variable definition> ::= <pool variable name> [<variableinitiaizer>]
<pool name> ::= <global identifier>

<pool variable name> ::= <globa identifier>

Rationale
Traditiona Smalltalk systems define a “pool dictionary” as a dictionary, each of whose
associations is a used to represent a variable. Dictionary messages are used to reflectively

add such associations and thereby create new pool variables.

In the declarative model, pools are smply a scoping mechanism for discrete variables. As
with globa variables, there is no implication or requirement that actual dictionaries or
associations be used to implement these variables. Because of the elimination of the need
to use reflective dictionary operations to create pool variables, the only context where a
reference to a pool name is defined is an <imported pool> production of a class definition.
Because the declarative model does not specify that a pool name is bound to an object, the
meaning of a reference to a pool name in a method or initializer is aso unspecified.
However, the fact the pool names are including in the globa name space permits
implementations to continue to use traditional implementation techniques and define that

references bind to an underlying dictionary object.

5. Advantages of the Declarative Model

5.1 Precise Program Definition

Declarative specification smplifies the identification of programs. Though a virtual image
is no longer a required feature, Smalltalk implementors may till chose to support one.
With definitions available for al program elements, no analysis of an image is required to

externalize the definitions. This has the following advantages:

The program is clearly separated from the image. It is easy to externalize programs
and load them into a new image either to recover from a corrupt image or to move to

anew version of the base virtual image.

Wirfs-Brock Declarative Smalltalk 15

It is easy to recreate a program because al the information about the program is
recorded as definitions. Programmers need not record and manage workspaces used to

create and initialize program el ements.

Program refinement and evolution is smplified because definitions can exist and be
manipulated even if they cannot be compiled given the current state of the program. A
class could be developed, for example, in the absence of definitions for its superclass
or collaborating classes. Porting an application using traditional Smalltalk tools implies
“filing in” code generated from another system. Illegal references to classes or globals
generally aborts the process. The programmer must create stub classes or edit the file-
in file to eiminate conflicts and iterate until the file is successfully read before its
contents can be browsed. Definitions, however, can be browsed even if they can’'t be

compiled.

5.2 Known starting point for program

The declarative model specifies awell known starting point for a program execution. This
is accomplished by specifying the order of the initidization definitions within a program
such that they run in a deterministic order. This determines an initia state that allows
Smalltalk programs to behave consistently each time they are executed.

5.3 Program Definition Separated from Implementation Artifacts

The declarative model decouples program specification from language implementation
decisions. Once programs are created using definitions, Smalltalk implementors are freed
from various constraints and assumptions about how language elements are to be

trandated into an executable Smalltalk program. Some areas of opportunity include:

Implementations can evolve without impacting existing programs. Because a program
is defined without reference to implementation artifacts, an implementor has the
freedom to make changes to the implementation without the fear that the changes will

invalidate existing programs.

A program can be portable between implementations even if they use very different
implementation strategies and artifacts. For example, a Smalltalk implementation
designed to support deployment of embedded applications might use significantly
different implementation strategies than an implementation that was designed to

support rapid prototyping.
Wirfs-Brock Declarative Smalltalk 16

5.4 Pool Distinguishable from Global Variables

The declarative mode alow pools to be distinguished from global variables, even if the
underlying implementation is identical. By defining the semantics of pools such that they
are only referenced at compilation time, this opens the door for static analysis of programs

and various optimizations.

Pools can be pruned to their required size and need not be represented as dictionaries.
Large genera-purpose pools are sometimes created during development without knowing
which pool variables will ultimately be required by the program. A pool containing
operating system constants, for example, must be very large to be complete but only a
small fraction of the entries may be used by any particular program. When programs are
defined declaratively, two optimizations can be performed. First, the variables that are
actually referenced can be identified so that unused pool variables can be omitted from the
executable program. Second, the pool need not be realized as a dictionary nor pool
variables as associations. If a pool variable is determined to be read-only (no assignments
other then its initiaizer), the value can be in-lined and the association that traditionally

implements the variable can be eliminated.

6. Reflection and Interactive Development Environments

Smdlltalk development environments are known for their high degree of interactivity and
functionality. They support fine grained incrementa creation of Smalltalk programs with
immediate feedback and executability. They aso support interactive programming aids
such as immediate cross-referencing and non-linear access to program elements using
browsers. It was the reflective implementation of the imperative definition model that

originally enabled Smalltalk environments to provide thislevel of functionality.

Incremental program creation and immediate execution is possible because the individual
program elements are added reflectively to an aready executing program. Each new class
or method immediately becomes part of the currently executing development environment
program and hence can be immediately executed. Similarly, any modification of an existing
program element also has immediate effect. Interactive debugging is also implemented

through reflection upon the objects that implement the program.

Higher level services such as browsing and cross-referencing are also implemented using

reflection upon the objects that implement the program. Browsers locate classes by

Wirfs-Brock Declarative Smalltalk 17

navigating the data structures that implement inheritance (subclass references within class
objects) or by directly accessing the “symbol table’” (the system dictionary) that stores
globa names. Cross-referencing is accomplished by scanning method dictionaries to
determine which classes implement particular methods or by scanning compiled methods

to seeif aparticular method is used to send a message.

What traditional Smalltalk development environments are actualy doing is using reflective
operations upon the implementation data structures as an “object model” of the program.
The existence of such a directly manipulatable object model means that the programming
environments can directly operate upon the logica elements of the program and avoid
time consuming parsing and editing of a textua representation of the program in an
externd file. Arguably, it was the existence of a directly manipulatable program model that
enabled implementors of Smalltak and Lisp to create the first highly interactive

devel opment environments.

Usage of a declarative model of Smalltalk program definition in no way precludes use of
such a reflective program model. A programming environment may trandate the
declarative specification of the program into implementation objects that it then directly
manipulates. Similarly, an implementation may provide runtime access to implementation

objects to enable reflection from within application programs.

Adoption of the declarative model provides an opportunity for development environments
to use a new form of program object model, one that models the declarative specification
of the program rather than its implementation artifacts. Such an object model has objects
that directly correspond to the elements of a declarative Smalltalk program definition
(classes, methods, pools, variables, etc.) rather than the implementation artifacts
(CompiledMethods, MethodDictionaries, Associations, Symbols, etc.) Typical operations
upon the model include declaring a class or variable, removing a method definition, or
querying to find all definitions that reference some other definition. These operations upon
the object model are aso expressed in terms of manipulations of the declarative program
gpecification abstractions rather than the direct manipulation of the runtime
implementation of the program elements. However, an operation may, as a side-effect,
trandate changes to the abstract program model into changes in the executable form of the

program.

Wirfs-Brock Declarative Smalltalk 18

Such a declarative object model has a number of advantages. Its enables tool builders and
end-users to write code to programatically manipulate Smalltalk program definitions
without having to understand al the details of the underlying implementation. More
importantly, it decouples the model of the program used by the development tools from
the actual executable implementation of the program elements. This permits the
technology for executing Smalltalk code to evolve without requiring changes to the
implementation of the programming environment tool set. It aso permits a tool set to
support aternative execution environments or technologies. Finaly, it permits the
execution environment for a Smalltalk program to be completely separate and distinct
from its development environment. Such a separation has the potential to enable or greatly
smplify the implementation of capabilities such as cross development or remote
debugging and to significantly increase the robustness and reliability of the Smalltalk

devel opment environment.

7. Experience and Application of the Declarative Model

A declarative model of Smalltalk program specification was first used in our design of
Modular Smaltalk [Wirfs-Brock88]. Subsequently, this approach was explored and
refined for more conventional Smalltalk dialects in the context of developing advanced
development environments for Smalltalk-80 [Goldberg84], Smadltak/V, Visua Smaltalk,
and VisuaWorks diadects of Smaltak. Team/VV [Digitak93, Parcplaced5] is a
comprehensive commercia Smalltalk development environment that is based upon the

declarative mode!.

Team/V uses a fully declarative model of Smalltalk programs. Externaly, program
definitions are stored in a textua declarative format. This format can be trandated into a
dynamic object model of the declarative program definition and the object model can be
externalize in the textual form. The object model serves as the “API” for both the
development tools and user “scripts’ that programatically manipulate the program
definitions. Changes to the declarative program model have the side-effect of reflectively

modifying the executable form of the program.

Team/V fully exploits the declarative model to allow Smalltalk program elements to be
reliably externalized and transported between different versions of the development
environment. Most significantly, Team/V is able to directly create deliverable versions of

the application from the declarative description. Other Smalltak development
Wirfs-Brock Declarative Smalltalk 19

environments require a “stripping” process that attempts to heuristically extract a

deliverable version of an application from the development environment.

The advantages of the declarative model for specifying Smalltalk programs have also been
recognized by the X3J20 committee which is chartered with developing an ANSI standard
[X3J20-96] for the Smalltalk programming language. The use of the declarative model is
expected to result in a language standard that precisely specifies the meaning of
conforming programs while dlowing implementors wide latitude in implementing

conforming implementations.

8. Related Work

Although they were not expressed in these terms, issues arising from the imperative
definition of Smalltalk programs motivated the development of Modular Smalltalk [Wirfs-
Brock88] and led to its use of a declarative style of program specification. Much of the
work described in this paper can be viewed as the application of these results to
mainstream Smalltalk dialects.

The designers of modern object oriented languages including Eiffel [Meyer92] and more
recently Java [Godling95] have used a declarative program specification model. The
designers of Dylan [Appled5] explicitly recognized problems that imperative program
definition created for application program delivery and chose to use the declarative model

for a dynamic object-oriented language.

Other researchers and language designers have chosen to emphasize and expand the
imperative reflective nature of languages similar to Smalltalk. Self [Ungar87] took as one
of its starting points the capability to directly manipulate objects that is available in
reflective Smalltalk systems and broadly generalized it such that programming becomes a
process of directly instantiating concrete objects with unique behaviors. In Self, a program
is generaly considered to be a collection of dynamic objects, and program interchange or
trangportability is treated as transporting such objects between execution environments
[Ungar95].

9. Conclusions

In this paper we have contrasted imperative and declarative techniques for describing
programs and have argued that Smalltalk’s use of an imperative program definition model

is a factor in many program maintenance and delivery issues encountered by Smalltalk
Wirfs-Brock Declarative Smalltalk 20

programmers. We assert that a declarative program definition model that addresses these
issues can be retrofitted to the Smalltalk language with minimal impact upon existing

Smalltalk implementations and programmers.

In support of this assertion we have presented a specification for Smalltalk program
definition and Smaltalk program execution that is based upon a declarative modd.
Application of this specification has enabled us to create Smaltalk development
environments that significantly improve the process of creating, maintaining, and
delivering Smalltalk applications. Use of the declarative model also provides Smalltalk
implementors the opportunity to be innovatative in their implementation technology while
increasing the portability of Smalltalk programs among various implementations of the

language.

We believe that the adoption of a declarative modedl of Smalltalk program definition is an
important step in the maturation of the Smalltalk programming language. It is a key
component of the emerging definition of a Smaltak standard and will further solidify

Smalltalk’ s emerging status as a“ mainstream” application development language.

Acknowledgments

Many of our colleagues at Tektronix, Instantiations, Digitalk, and ParcPlace-Digitalk have
participated in the development of the declarative model of Smalltalk and programming
environments based upon it. John Wiegand, Dale Henrichs, and Carl McConnell have al
been instrumental in the creation of an object model for manipulating declarative Smalltalk
programs. Steve Messick, Tim O’'Connor, and Pat Caudill have contributed to the

development of development tools that exploit this object model.

We would aso like to acknowledge the organizational and individual participants in the
X3J20 Smdltalk standardization process. They have been exceptiondly receptive and
supportive of the adoption of this declarative model. Some of the material in this paper has
appeared in ggnificantly different forms in various working papers of the X3J20

committee.

References

[Appled5] Apple Computer, Dylan Reference Manual, 1995,
http://www.cambridge.apple.com/dylan/drm/drm-1.html

Wirfs-Brock Declarative Smalltalk 21

[Digitalk93] Digitalk Inc., TeanVV Programmers Reference Manual, 1993

[Goldberg83] Adele Goldberg and David Robson, Smalltalk-80 The language and its
I mplementation, Addison Wedley, 1983.

[Goldberg84] Adele Goldberg, Smalltalk-80: The Interactive Programming Environment,
Addison Wedey, 1984.

[Godling95] James Godling and Henry McGilton, “The Java Language Environment: A
White Paper”, 1995, http://java.sun.com/whitePaper/java-whitepaper-1.html

[Krasner83] Glenn Krasner, “The Smalltalk-80 Code File Format” in Smalltalk-80 Bits of
History, Words of Advice, Glenn Krasner editor, Addison Wesley, 1983.

[Meyer92] Bertrand Meyer, Eiffel: The Language. Prentice-Hall, New Y ork, 1992.

[ParcPlace95] ParcPlace-Digitalk Inc., Visual Smalltalk Enterprise Tool Reference
Manual, 1995

[Ungar87] David Ungar and Randall B. Smith, “Self: The Power of Simplicity”, in
Proceedings of OOPSLA ’* 87, Orlando, Florida, October 1987, pp. 227-241.

[Ungar95] David Ungar, “ Annotating Objects for Transfer to Other Worlds’, in
Proceedings of OOPSLA *95, Austin, TX, October 1995, pp. 73-87.

[Wirfs-Brock88] Allen Wirfs-Brock and Brian Wilkerson, “ A Overview of Modular
Smalltalk”, in Proceedings of OOPSLA ' 88, San Diego, CA, September 1988, pp. 123-
134.

[X3J20-96] X3J20 Committee, Working Draft Smalltalk Sandard, March 1996.

Wirfs-Brock Declarative Smalltalk 22

Appendix — Abstract Syntax and Static Semantics of Smalltalk
Programs

This appendix is a more complete specification of the abstract syntax and semantics for
Smdlltalk programs that is summarized in section 3. This specification is a somewhat
smplified verson of what has been proposed for use in the Smalltalk standard that is
currently under development by X3J20.

Program Definition

The definition of a Smaltak program consists of a sequence of program element
definitions. The program element definitions define al discrete variables, statically created
objects and the behaviors of al objects that will take part in the computation. In addition,
the program definition specifies the order of dynamic initidization for al program

eements.

<Smalltalk program> ::= <program element>+

<program element> ::= <class definition> |
<global definition> |
<pool definition>

The order of the <program elements> determines the initialization order of the program

eements.

Class Definition

A class definition defines the instance variable structure (the encapsulated state) and
behavior of objects. In addition, a class definition introduces a named object binding with
global scope. This name is called a class name and the associated object is a class object.
A class definition specifies the behavior and instance variable structure for both the
statically created class object and dynamically created instances of the class.

A class definition specifies two behaviors, the instance behavior and the class behavior.
The instance behavior is the behavior of any dynamicaly created instances of the class.
The class behavior is the behavior for class object. Through the use of inheritance, the
instance variable structure and behavior for both the class object and instance objects may
be specified as a refinement of that specified by another class definition known as its
superclass. Conversely, a class definition that inherits such structure or behavior is known

as asubclass of its superclass.

Wirfs-Brock Declarative Smalltalk 23

A class definition may also define discrete variables caled class variables whose scope is
all methods (either class or instance methods) defined as part of the class definition or as
part of the class definitions of any subclasses of the class definition. In addition a class
definition may specify the importation of pools. Any pool variable defined in such poolsis
included in the scope of al methods defined as pat of the class definition.

Wirfs-Brock Declarative Smalltalk 24

<class definition> ::=
<class name> [<superclass name>|
[<instance variables>]
[<classinstance variables>]
[<class variables>]
[<imported pools>]
[<instance methods>]
[<class methods>]
[<classinitializer>]
<class name> ::= <global identifier>
<superclass name> ::= <global identifier>
<instance variables> ::= <local identifier>*
<classinstance variables> ::= <local identifier>*
<class variables> ::= <globa identifier>*
<imported pools> ::= <global identifier>*
<instance methods> ::= <method definition>*
<class methods> ::= <method definition>*
<classinitializer> ::= <expression sequence>

The <class name> is the global name of the class object. There may be no other globa
definitions of this name within the program. The binding of the <class name> to the class

object is a constant binding. It may not be the target of an assignment statement.

The <superclass name> identifies the class definition from which this definition inherits. It
must be the <class name> of another <class definition> within this program. The instance
behavior defined by the class definition consists of the instance behavior of the superclass
augmented by the <instance methods> of the class definition. An <instance method>
whose selector is the same as the selector of a method in the inherited behavior replaces
the inherited method in the behavior. Similarly, the class behavior defined by the class
definition consists of the class behavior of the superclass augmented by the <class

methods> of the class definition.

If the <superclass name> is absent then this class has no inherited instance behavior and
the instance behavior consists solely of the <instance methods> that are part of the class
definition. The class behavior of such a class is defined to inherit from the instance

behavior of the <class definition> whose <class name> is the identifier ‘ Object”.

It is an error if the <superclass name> is the same as the <class name> or if <superclass
name> is the name of a class that directly or indirectly (via inheritance) specifies <class

name> as a superclass.

Wirfs-Brock Declarative Smalltalk o5

The encapsulated state of an object consists of a fixed set of variables capable of
referencing any object and an optiona variable sized, anonymous sequence of such
variables. The variable sized sequence of anonymous instance is known the indexable-
part. The size of an object’s indexable-part is fixed when the object is instantiated. Class

objects do not have an indexable part.

The <instance variables> production defines the names of instance variables for instances
of the class. If present, it must include a set of identifiers. These identifier are called
instance variable names. It is erroneous for the same identifier to occur more than once in
the set of instance variable names. The meaning of the class definition is undefined if any
of the instance variable names is the same identifier as an instance variable or class variable
defined by any superclass. It is an error for an instance variable name to also appear in the

set of class variable names.

The fixed set of instance variables encapsulated by an instance object consists of one
variable corresponding to each instance variable name specified in the class definition and
trangitively in any superclass definitions. The instance variable names are included in the
scope of any <instance methods> defined by the class definition or its subclasses. The
binding of such an instance variable name is the corresponding instance variable of the

object that is the recelver of the message that invoked the method.

The <class instance variables> production defines the names of instance variables of the
class object. If present, it must include a set of identifiers. These identifiers are called class
instance variable names. It is erroneous for the same identifier to occur more than once in
the set of class instance variable names. The meaning of the class definition is undefined if
any of the class instance variable names is the same identifier as a class instance variable or
class variable defined by any superclass. It is an error for a class instance variable name to

also appear in the set of class variable names.

The fixed set of class instance variables encapsulated by a class object conssts of one
variable corresponding to each class instance variable name specified in the class definition
and trangitively in any superclass definitions. The class instance variable names are
included in the scope of any <class methods> defined by the class definition or its
subclasses. The binding of such a class instance variable name is the corresponding class

instance variable of the object that is the receiver of the message that invoked the method.

Wirfs-Brock Declarative Smalltalk 26

The <class variables> production defines the names of discrete variables which are
accessible by both class and instance methods of the class and its subclasses. If present, it
must include a set of identifiers. These identifiers are called class variable names. It is
erroneous for the same identifier to occur more than once in the set of class variable
names. The meaning of the class definition is undefined if any of the class variable namesis
the same identifier as an instance variable, class instance variable or class variable defined
by any superclass. It is an error for an class variable name to also appear in the set of

instance variable names or class instance variable names.

The fixed set of class variables encapsulated by a class object consists of one variable
corresponding to each class variable name specified in the class definition and trangitively
in any superclass definitions. The class variable names are included in the scope of any
<instance methods> or <class methods> defined by the class definition or its subclasses.
The binding of such a class variable name is the corresponding class variable of the object

that is the receiver of the message that invoked the method.

The <imported pools> production, if present, must include a set of identifiers. These
identifiers are pool names. It is erroneous for the same identifier to occur more than once
in the set of pool names. It is an error if a pool name is not the <pool name> of a <pool
definition> within the program. All pool variable names contained within the pools
associated with the names in the set of pool names are included in the name scope of the

class and instance methods of this class.

The behaviors of the instances of the class and the class object are defined, respectively, by

the <instance methods> and the <class methods>.

The <class initializer> production consists of a zero argument block body that defines the
code that is used to initidize the class variables and class object defined by the class
definition. The name scope of the class initializer is the same as that of a class method for
the class. A class initidizer is not inherited by subclasses. The value returned by a class

initializer is discarded.

Global Definition

A globd variable definition is used to specify a discrete variable whose name scope
includes the entire program. The definition includes the Smalltalk code that provides the

initial value of the variable.

Wirfs-Brock Declarative Smalltalk 27

<global definition> ::= <global variable name> [<variable initializer>]
<global variable name> ::= <global identifier>
<variable initidizer> ::= <expresson sequence>

The <global variable name> is the globa name of a discrete variable. There may be no
other definition of this name as a global, class or pool within the program. The <variable
initializer>, when evaluated, provides the initia value of the globa. If no <variable
initializer> is specified the initia value is nil. The value of the global, before evauation of

the <variableinitializer> is undefined.

Pool Definition

A pool definition introduces a global name binding for a variable pool and defines the

names of the discrete variables within the pool.

<pool definition> ::= <pool hame> <pool variable definition>*

<pool variable definition> ::= <pool variable name> [<variableinitiaizer>]
<pool name> ::= <global identifier>

<pool variable name> ::= <globa identifier>

The <pool name> is the globa name of the variable pool. There may be no other definition
of this name as a global, class or pool within the program. An identifier that is bound to a
variable pool with a <pool definition> is called a pool name. Pool names normaly are
listed in the <imported pools> production of a <class definition>. The meaning of using a

pool name in any other context is unspecified.

A <pool variable definition> introduces a name binding within a pool for a discrete
variable. The <pool variable name> is the name of the discrete variable. It is an error to
have more than one definition of a name within the same pool. The <variable initidizer>,
when evauated, provides the initial value of the pool variable. If no <variableinitiaizer> is
specified the value is nil. The value of the pool variable, before evaluation of the <variable

initializer>, is undefined.

Wirfs-Brock Declarative Smalltalk 28

