

ECMAScript 2015 “ES6”

14 CH-1204G

What is ECMAScript!

ECMAScript is the name of the ecma
international standard that defines the
JavaScript programming language P

Developed by Technical Committee 39
(TC-39) of Ecma International

Issued as document ECMA-262

Not part of W3C

Google Mozilla ~ Microsoft Webkit
V8 SpiderMonkey Chakra JSCore

JavaScript Implementations

- e JOAN '#’n &ﬂaelmfﬂaoa 6faooucrrbu Sy 4

€. .PRODUCED BY:EDWARD LEWIS * DIRECTED BY.JOHNFRANKENHEIMER. = =
__}\'_PABAMOUNT RELEASE P

u‘rﬂ“l AV, \.

May 1995, Created in ten days by Brendan Eich at Netscape ‘Mocha”

September 1995, shipped in beta of Netscape Navigator 2.0:“LiveScript”
December 1995, Netscape 2.0b3:“JavaScript”
August 1996, JavaScript cloned in Microsoft IE 3.0:“|Script”
1996-1997, Standardization ECMA-262 Ed. |: "ECMAScript” aka ESI
1999, ES3 — modern |S baseline

ol

PRODUCED BY‘EDWARD LEWIS * DIRECTED BYJOHNFRANKENHEIMER
__}\'.PABAMODDIT RELEASE

ettt A —

ECMAScript: Troubled Adolescence

® 2000: ES4, attempt |

® 2003-4: E4X, XML extensions for ECMAScript

® 2005-8: ES4, attempt 2

® 2007: Work on ES 3.1 starts as TC39 side-project
® 2008: ES4 abandoned

® 2009: ES5: “use strict”, JSON, Object.create, etc.

The ECMAScript Standard Timeline

“Web 2.0” / AJAX

ES 2015

‘(ES6”

JS Performance
Revolution _ »*
’f

First Comprehensive Revision Since 1999
Some ECMAScript 2015 Enhancements

® More concise and expressive syntax

® Modules

® Class Declarations

® Block scoped declarations

® Control abstraction via iterators and generators g

® Promises

® String interpolation/Internal DSL support

® Subclassable built-ins

® Binary Array Objects with Array methods ES 2015 (June 2015): 566 pages
® Built-in hash Maps and Sets + weak variants. ES 5 (Dec.2009): 252 pages
® More built-in Math and String functions ES 3 (Dec. 1999): 188 pages
° ES 2 (Aug 1998): | 17 pages

Improved Unicode support, Unicode RegExp ES | (June 1997): 1 10 pages

TC-39 isn’t like either of these

NETELIN

Things TC-39 focused on for ES 2015

® Modularity

® Better Abstraction Capability
® Better functional programming support
® Better OO Support

® Expressiveness and Clarity

® Better Compilation Target

® Things that nobody else can do

What Kind of Language Is JavaScript!?

® Functional?
® Object-oriented?
® Class-based?
® Prototype-based?
® Permissive?

® Secure!?

Photo by crazybarefootpoet @ flickr (CC BY-NC-SA 2.0)

LN

—\‘\X‘

Franken- Ianguage""

http://www.flickr.com/photos/benledbetter-architect/sets/72 | 57594338948430/

A common meta-tweet

ES6 <insert some feature> is based

on <insert some other language>.

What language had the most influence on the
design of ECMAScript class declarations!?

a) Java

b) C++
c) Ruby
d) Dart

e) Smalltalk

/f) Something else: JavaScript

JavaScript Class “Constructor” Pattern

Methods

Instance Objects Prototype Objects (Function Objects) Constructor Functions

Classes ES5 vs ES 2015

//ES5 define Employee as subclass of Person

function Employee(name,id) {
Person.call(name) ;
this.id = id;

}

Employee.prototype=0bject.create(Person.prototype);

Object.defineProperty(Employee.prototype, “constructor”,
{value:Employee,enumerable:false,configurable: true});

Employee. proto__ = Person;

Employee.withId = function (id) {..}

Employee.prototype.hire = function() {..};

Employee.prototype.fire = function () {..};

//ES2015 define Employee as subclass of Person

class Employee extends Person {
constructor (name,id) {
super (name) ;
this.id = 1id;
}
hire () {..}
fire () {..}
static withId (id) {..}

Both create the same object structure

Interconnections g

111
72

i

Vi
7

0 {
7 4
Ayl Ay
o/
5 Wiy / j
\ 0!

A\ /
D / / 4
4

=
=)
/

e

.
)

~
7/
14

' Interactions

The closure in loop problem

function f(x) {
for (var p in x) {
var v = doSomething(x, p);
obj.addCallback(
function(args){
handle(v, p) args)}

}

obj.runCallbacks();

var hoisting causes the problem

function f(x) {

var p;

var v;

for (var—p in x) {
va+r—Vv = doSomething(x, p);
obj.setCallback(

function(args) {
handle(v, p, args)}

}

obj.runCallbacks();

ES6 can’t redefine the scoping of var

function f(x) {
for (var p in x) {
var v = doSomething(x, p);
if (v === somethingSpecial) break;

}

if (v === somethingSpecial)

Fixing closure in loop problem:
Add a new block scoped declaration

function f(x) {
for (ver—let p in x) {
var—let v = doSomething(x, p);
obj.setCallback(
function(args)4
handle(v, p,) args)
)}
}
}

obj.runCallbacks() ;

Other local scoping WTFs

function f(x,x) {
var X;
for (var x in obj) {
if (obj[x] === somethingSpecial) {
var x = 0;

}

}
function x() { doSomething()}

X();

Want to avoid new let WTFs
//duplicate declarations //duplicate géihnd var
function f() { functio {

let x = 1; =1,
let x = 2; <§§%§i§a X = 2;
¥
//duplicate let and pa@a

function h(x) { //hoist var to/over let
let x = 1: £E§> function ff() {
) QE;;{)» let x = 1;
//duph’cat d function 1t (pred) {
function h(y var X;
let x = 1; }
function x() {} }

Some ES6 Declaration Rules

Single unique binding for any name in a scope.

Multiple var and top-level function declarations for the same
name are allowed. (Still one binding per name)

All other multiple declarations are errors: var/let, let/let, let/const,
class/function, etc.

var declarations hoist to top level and auto initialized to undefined.

Can’t hoist a var over any other declaration of same name (except
a top-level function,)

Runtime error, for accessing or assigning to an uninitialized binding

let, const, class declarations are dead until initialized (TDZ).

secma

ECMAScript 2030
Language Specification

o

-

dard

So, What’s Next!?

ECMAScript 2030 ?

| 132 pages ?

The ECMAScript Standard Timeline

Release trains are now leaving the station

N ES

2016 2017 -~

J

Annual June
Incremental Updates

The TC39 Process

The Ecma TC39 committee is responsible for evolving the ECMAScript programming language and authoring the specification. The committee operates by consensus and has discretion to alter the specification as it sees fit. However, the general process for making
changes to the specification is as follows.

Development

Changes to the language are developed by way of a process which provides guidelines for evolving an addition from an idea to a fully specified feature, complete with acceptance tests and multiple implementations. There are four “maturity” stages. The TC39
committee must approve acceptance for each stage.

Maturity Stages
Stage Purpose Entrance Criteria Acceptance Signifies Spec Quality Post-Acceptance Changes Implementation
Expected Types Expected*
0 | Strawman | Allow input into the specification None N/A N/A N/A N/A
1 | Proposal « Make the case for the « Identified “champion” who will advance the The committee expects to devote time to None Major Polyfills / demos
addition addition examining the problem space, solutions and
« Describe the shape of a « Prose outlining the problem or need and the cross-cutting concerns
solution general shape of a solution
« Identify potential challenges « lllustrative examples of usage
« High-level API
« Discussion of key algorithms, abstractions and
semantics
« |dentification of potential “cross-cutting”
concerns and implementation
challenges/complexity
2 | Draft Precisely describe the syntax and « Above The committee expects the feature to be Draft: all major semantics, syntax and APl | Incremental Experimental
semantics using formal spec « Initial spec text developed and eventually included in the are covered, but TODOs, placeholders and
language standard editorial issues are expected
3 | Candidate | Indicate that further refinement will « Above The solution is complete and no further work is | Complete: all semantics, syntax and API Limited: only those deemed Spec compliant
require feedback from « Complete spec text possible without implementation experience, are completed described critical based on implementation
implementations and users « Designated reviewers have signed off on the significant usage and external feedback. experience
current spec text
« The ECMAScript editor has signed off on the
current spec text
4 | Finished | Indicate that the addition is ready for | « Above The addition will be included in the soonest Final: All changes as a result of None Shipping
inclusion in the formal ECMAScript « Test 262 acceptance tests have been written practical standard revision implementation experience are integrated
standard for mainline usage scenarios
« Two compatible implementations which pass
the acceptance tests
« Significant in-the-field experience with shipping
implementations, such as that provided by two
independent VMs
« The ECMAScript editor has signed off on the
current spec text

Process: https://tc39.github.io/process-document/
Proposals: https://github.com/tc39/ecma262/blob/master/README.md

ECMAScript 2016, June 2016

New Features
® [“a”, “Db”, “c”’].includes(“b”) /ltrue

3 %2 [/9, the exponentiation operator

Missed the 2016 Train
async functions
® SIMD support
® String padStart, padEnd

® Etc.

@ecma

allCl ECMA-262

6% Edition / June, 2015

ECMAScript 2015
Language Specification

Rue du Rhéne 114 CH-1204 Geneva T:+41 228496000 F: +41 22 849 6001

It’s real
The specification is done

Transpilers and polyfills available
today

It’s being implemented in your
favorite browers right now

It’s the foundation for the next
|0-20 years of JavaScript evolution

It Hlas Legs

WOV

U

re.html

http://www.robomargo.com/furnitu

http://wirfs-brock.com/allen/files/forwardjs2016.pdf

Allen Wirfs-Brock

http:/ [www.wirfs-brock.com/allen
allen@wirfs-brock.com

@awbjs

