What we say versus what we do

I’ve been hunting design heuristics for a couple of years. I’ve had conversations with designers in order to draw out their “go to” heuristics. I’ve joined design and programming sessions with experienced designers and captured on-the-fly what we were doing. My goal is to learn ways to effectively find heuristics in the wild, distill them, and then share them broadly.

But lately, I’ve been thinking about how to deal with this puzzle: What people say they do isn’t what they really do.

Let me give you an example. I joined the Cucumber folks last summer for several remote mobbing sessions. One heuristic they shared with me was this:

Heuristic: the person who has the most to learn (or knows the least about how to solve the problem) should take on the role of driver.

In “classic” mob programming as initially described, the person who is the driver and has his or her hands on the keyboard follows guidance of navigators—other mobbers who ostensibly guide the driver on what to do in order to make progress.

“In this “Driver/Navigator” pattern, the Navigator is doing the thinking about the direction we want to go, and then verbally describes and discusses the next steps of what the code must do. The Driver is translating the spoken English into code. In other words, all code written goes from the brain and mouth of the Navigator through the ears and hands of the Driver into the computer.”

What I observed the Cucumber mob doing was somewhat different. Sometimes the driver had an initial design idea and was keen to try it out. In this case, they often actively navigated and drove at the same time. Occasionally others would comment and offer advice. But mostly they just watched the design and implementation unfold. Sometimes that eager driver asked the others, should we try this now? But instead of waiting an uncomfortable length of time for them to chime in, the driver often continued on without any discussion. And I don’t think that driver was asking a rhetorical question. They wanted feedback if someone had any.

At other times the driver would stop to collect their thoughts and force a discussion. In this case the driver became uncomfortable when they didn’t get enough feedback. And sometimes they took themselves out of the driver’s role, asking someone else to fill in. In short, while I observed that driver was often in control of the wheel (and forward progress), at the same time, they didn’t overly dominate. Drivers rotated. Every one got their turn. But how these switches happened was very dynamic.

In all fairness, the mob programming website did touch on drivers and their participation in discussions:

“The main work is Navigators “thinking , describing, discussing, and steering” what we are designing/developing. The coding done by the Driver is simply the mechanics of getting actual code into the computer. The Driver is also often involved in the discussions, but her main job is to translate the ideas into code.”

While the main job of the driver may be “mechanics,” the small fast moving Cucumber team didn’t insist that getting the code into the computer be the driver’s main function. Now mind you, I suspect being remote affected their style of communications. They also knew each other well and knew each others’ common design approaches and preferences.

So why did the Cucumber mob behave this way? Did they believe one way but consciously act in another way? Did they intentionally lie about their heuristics? Or were they deceiving themselves? Are people wired to explain what they do through some kind of distortion field? How often do people believe one thing (and hold it up as an ideal) but then choose alternative heuristics? If so, is this OK?

I’m not sure the team was aware that their ways of driving/navigating deviated from the conventional driver/navigator roles until I shared my observations with them. I suspect that when they first started mobbing they were more rigorous about following the “rules” for these roles. Over time they found their own ways of working. And so the heuristics they collectively use to decide what to do, what design approach to try next, and how they interact with each other are much more fluid and nuanced than the simple descriptions of drivers and navigators on the mob programming website. They don’t exactly go “by the book.” And I suspect their heuristics for how they work together are still evolving.

So how should I as a heuristics hunter reconcile my simple goal of distilling essential heuristics with the messy realities I find on the ground?

Should I plunge into a concerted effort to sort out and formulate more nuanced heuristics? The short answer is, yes. While I want to find and record both general and more particular heuristics, I’m not inclined to want to sort them out into tidy, neat categories. After all, as Billy Vaughn Koen says, there is more than one way to solve any design problem and more than one heuristic that can work. By recording these nuances, I hope to get richer insights into the different conditions and cases and situations that lead to choosing them.

This still leaves me with one nagging question: How can I reconcile what people say they do and believe with what they actually do? My (current) approach is that as I distill heuristics I also describe the context where I find them. Should it bother me that designers don’t do as they say they do all the time? Probably not. After all, we’re wonderfully creative problem solvers. And there are always options.

Nothing ever goes exactly by the book

In Designing Object-Oriented Software, we used the design for an ATM (Automated Teller Machine) to illustrate how to design object-oriented software. We worked through a simplistic design for an ATM and produced a CRC (Class-Responsibility-Collaborator) Card design.

Several years after our book was published I received an email from an instructor at a company. Although he liked our book, he felt he was missing something important about Responsibility-Driven Design. No matter how hard he tried, his students never exactly reproduced our design! And worse yet, in his opinion, all their designs were different.

I was astonished that he expected to teach principles, practices, and design thinking and then magically his students would produce identical designs. Our minds don’t work alike, so why should we produce identical designs?

A couple of years ago I received a gift of a Blue Apron subscription. For those who are not familiar with Blue Apron, you select the meals you want for a week, then along with the recipes they ship you a box of ingredients. All you add is your own salt and olive oil, cooking utensils, stove, and voila—you make a tasty dish.

The first meal I cooked was Za’atar-Roasted Broccoli Salad. The picture of the dish on the recipe card looked like this:
And here’s a photo of the dish as I prepared it:
Not bad! But I didn’t blindly follow the recipe. I used my brain, my eyes, and my cooking sense, as well as past experiences, when making that dish.

If you look closely the recipe card below you’ll see that the instructions are not equally precise. While the eggs should be boiled for exactly 9 minutes, there’s more tolerance in the time to roast the broccoli. Just exactly how much is a drizzle? And that there are so many points during the recipe when you are asked to add salt! Over time (and following several recipes’ instructions too closely) I learned that if you added salt every time they advised you to, the meals would be too salty. Over time, Blue Apron has adjusted their recipes to not include so many salt instructions.

There is no substitute for learning from direct experience and observation. A beginning cook who expects to follow instructions exactly and get a well-made dish is bound to be frustrated.

And people who expect to follow someone else’s software design heuristics and end up with an optimal solution to their specific design problem will invariably be disappointed.

Sure, you may initially learn some design heuristics from a book or by reading code or from someone who is more senior or stack overflow or wherever. But never expect things to go exactly “by the book.” There are many details that experts never share that you’ll have to fill in. And don’t get frustrated when experts change their minds or design approaches or disagree (they do all the time). But don’t be silent, either, if you are puzzled or curious. Ask them about their thinking. They may have encountered an edge case or an exception to some “general” heuristic. Or there may have been more to the design problem than they had initially thought. By having that conversation you just might learn something from each other.

Writing, Remembering, and Sharing Design Heuristics

I’ve been experimenting with simple ways to record software design heuristics. I want to find ways to vividly bring to mind the design heuristics I use or learn about from others. Ideally, any written heuristic should be shorter than a software pattern and somewhat more detailed and informative than a single pithy phrase.

There are three reasons it is important to physically write heuristics instead of just talking about them or clipping online sources into a note taking app:

1. Writing helps us remember the important bits
For a good overview of the benefits of notetaking, read this lifehack article by Dustin Wax. If nothing else this should inspire you to jot down and/or draw by hand the key bits of the next talk or lecture you listen to. What we write we remember.

2. Writing in longhand helps us process our experiences
Research shows that the act of writing in longhand is quite different than typing. This Medical Daily article by Lizette Borreli summarizes research into the memory boosting benefits of writing longhand:

“…writing by hand allows the brain to receive feedback from a person’s motor actions, and this specific feedback is different than those received when touching and typing on a keyboard… Overall, it seems those who type their notes may potentially be at risk for ‘mindless processing.’ The old fashioned note taking method of pen and paper boosts memory and the ability to understand concepts and facts.”

3. Written heuristics can be shared
Once you’ve written some tried and true heuristics in your own words, you can share them with others. Even better, use these heuristics to stimulate a deeper discussion into the design heuristic space you are exploring. Don’t shy away from discussions about nuances, counter-examples, edge cases, and competing heuristics (alternative ways to tackle a specific design problem). You may uncover a wealth of new heuristics to ponder and open up your mind to new ways of solving familiar problems.

If the person you are conversing with doesn’t know much about the topic area of your heuristics, the questions they ask will likely lead you to clarify your thinking (or at least improve your explanations). They won’t get what you are saying if you speak too much in shorthand. If they know more about the topic, you may have a lively conversation about heuristics and lessons they’ve learned over time. They may validate your heuristics as well as give you some new ideas.

A Simple Idea- QHE Cards
I’ve been playing around with using index cards as a means to quickly capture a heuristic. I structure a heuristic in three parts: a question, the answer (which can be then polished into a couple sentence heuristic), and an example or two to help me remember. I call them QHE (Question-Heuristic-Example) or “Q-Hee” cards, for lack of a better name. Using index cards to record design heuristics is inspired by CRC (Class-Responsibility-Collaborators) cards invented by Ward Cunningham and Kent Beck and popularized in my first design book. I like index cards.

Here’s two QHE Cards describing heuristics found in a conversation with Mathias Verraes about designing event records:
AnnotatedQHECard2019_04_12 2_03 PM Office Lens~2 (1)

QHE cards are simple to write. I don’t worry about precision or formality. With a little bit of effort I can turn a question and answer into a short heuristic statement. For example, here’s my first cut at a heuristic for what information to include in an event record:

Heuristic: Only include information necessary to “replay” an event and achieve the same results. Don’t include sensitive information or extra information simply because you think it might be useful.

An example or two to jog my memory is essential. And just like CRC cards, they can be too terse for others to understand (or to remember, if I wait too long). To make a heuristic memorable, I need to actively integrate that heuristic into my design heuristic gestalt. This is especially true if it is about a design topic I am not that familiar with.

To create a stronger memory and deeper understanding I can write more about the heuristic, sketch out a more detailed example, write some code, and/or draw a diagram…whatever it takes to go a bit deeper.

Heuristic gists are especially useful when you want to share heuristics with others. They may need a bit more context to understand what you mean. I like to write them in a form similar to pattern gists. Here’s an example of a pattern gist from Fearless Change Patterns by Mary Lynn Manns and Linda Rising:

And here’s how I rewrote the QHE card for deciding when to generate different events from a process as a gist:

Multiple Events for a Single Process
You need to balance passing along information needed by downstream processes in a single business event with creating multiple event records, each designed to convey specific information needed by a specific downstream process.

Summary of Problem
How do you know how many events to generate for a single business process?

Summary of Solution
If different processes downstream react differently, generate different events. For example, handling a “rental car return” request might generate two events and event records: “car returned” and “mileage recorded.” Even though the mileage is recorded at the time a car is returned, mileage could be recorded at any other time as well. It is a cleaner design to generate two events, rather than cram information into a single, overloaded “car returned” event.

The act of writing a bit more detail in a gist often leads to further questions which lead to even more design heuristics. For example, these questions quickly come to mind: When is it OK to pass along extra information in an event? When is it not OK? What kinds of information should never be passed along in an event record? What happens if a new business process needs slightly different information?

And that’s the point. There are a myriad of details to work out for any real design. And many more heuristics for solving design problems and learning to live with their consequences. By writing down your heuristics, you’ll remember what you were thinking at the time. Note to future self: That effort just might be worth it!

What do typical design heuristics look like?

In my previous post I introduced the topic of design heuristics. Billy Vaughn Koen, in Discussion of The Method: Conducting the Engineer’s Approach to Problem Solving, defines a heuristic as, “anything that provides a plausible aid or direction in the solution of a problem but is in the final analysis unjustified, incapable of justification, and potentially fallible.”

Common phrases that mean roughly the same thing as heuristic in English include “rule of thumb or “practical method” or “useful shortcut” or “approximation”. I don’t think approximation or shortcut convey the essence of what makes a heuristic handy or helpful. Wikipedia defines heuristic as, “any approach to problem solving, learning, or discovery that employs a practical method not guaranteed to be optimal or perfect, but sufficient for the immediate goals.”

Heuristics describe practical actions or attitudes we take in order to make design progress. Billy gives several examples of general engineering heuristics in his book:
Reading these heuristics you might think, “Ah, heuristics are merely simple statements of what to do.”

Although heuristics can be boiled down into pithy advice, e.g. “Do this…” or “Don’t do that…,” I find that there usually is a lot more behind any simple phrase. Ask any design expert about how to tackle a specific design problem and she’ll add caveats and constraints and assumptions. Her heuristics might sound more like, “Do this when…and… unless … and here’s how I might …”. Or, “Try this first…and then…until…”.

Which leads me to observe that written design patterns–specifically software design and architecture patterns–are a handy form for sharing meaty, complex, nuanced design heuristics with others.

Consider this summary of the pattern, Do a Mock Installation, from Object-Oriented Re-engineering Patterns that illustrates some of that extra useful stuff that can be explained by a pattern.

  • Pattern: Do a Mock Installation
  • Intent: Check whether you have the necessary artifacts available by installing the system and recompiling the code.
  • Problem: How can you be sure that you will be able to (re)build the system?
  • Difficulties:
    • The system is new to you, so you do not know which files you need.
    • The system may depend on libraries, frameworks, and patches, and you’re uncertain you have the right versions available.
    • The system is large and complex, and the exact configuration under which the system is supposed to run is unclear.
    • Maintainers may answer these questions, or you may find answers in documentation, but you still must verify whether this information is complete.
  • Solving this is feasible because:
    • You have access to the source code and the necessary build tools
    • You have the ability to reinstall the system in an environment that is similar to that of the running system
    • Maybe the system includes some kind of self-test
  • Solution: Try to install and build the system in a clean environment taking a limited amount of time (at most one day).
  • After the build prepare a report:
    • Version number of libraries, frameworks and patches used
    • Dependencies between the infrastructure
    • Problems you encountered and how you tried to solve them
    • Suggestions for improvement
    • Assessment of the situation including possible solutions/workarounds (if failed)
  • Tradeoffs:
    • Pros:
    • It is an essential prerequisite
    • Demands precision
    • Increases your credibility
    • Cons:
    • Tedious activity
    • No certainty
    • Difficulties: Easy to get carried away.

When written well, patterns include just the right amount of extra advice. Advice that a competent designer has gained through experience and reflections. Patterns can even warn us about potential roadblocks or advise us on what to try next if the pattern’s solution isn’t a good fit for our specific problem.

But in addition to those larger-grained design problems typical of patterns, there are many smaller design decisions and gnarly design details we have to deal with. And as experienced designers, we too, have heuristics for addressing them rattling around in our brains. Wouldn’t it be great if we could find easy ways (easier than writing patterns) to record and share our heuristics with each other?

Here’s a photo of some heuristic snippets captured in a one-day workshop I held at DDD Europe:
I’ve been experimenting with simple ways to record, share, and communicate design heuristics that require far less effort to create than full-fledged patterns yet convey more than can be shared on a sticky note. Somewhere between full-fledged written patterns and pithy phrases is a sweet spot I’m striving for. That’s topic of my next post.

Growing Your Personal Design Heuristics Toolkit

Billy Vaughn Koen’s Discussion of The Method has had a profound influence on my thoughts about design. This book has inspired me to explore the role that software patterns play alongside other design heuristics and led me to muse about design uncertainty. I’ve been inspired to experiment with simple ways to capture design heuristics and I’ve spent time heuristics hunting with other designers.

In this blog post I’ll introduce you to Billy Vaughn Kohn’s ideas about problem solving and heuristics. Billy defines heuristic as

“anything that provides a plausible aid or direction in the solution of a problem but is in the final analysis unjustified, incapable of justification, and potentially fallible.”

There are no guarantees. Heuristics can fail. The tenacity that defines an engineer is when she steps back, regroups, and finds a different heuristic to try next. Another important thing to consider is that there are always competing heuristics to choose from. There simply isn’t a single right way to solve any complex design problem. Based on our assessment of the situation, our judgment, and the fit of the heuristics we know to the problem at hand, we decide what to do next. And when designers disagree, it may be because they are focusing on different aspects of the problem, or that they have a different collection of cherished heuristics in their toolkit (whether or not they can articulate them).

Courtesy of xkcd.com https://xkcd.com/309/

Courtesy of xkcd.com https://xkcd.com/309/

Billy describes three different type of heuristics:

    1. Heuristics we use to solve a specific problem;
    2. Heuristics that guide our use of other heuristics (meta-heuristics, if you will); and
    3. Heuristics that determine our attitude and behavior towards design or the world and the way we work.

Let’s take a closer look at each type.

Heuristics we apply to solve a problem. For example, in his book, Billy gives several examples of general engineering heuristics: Heuristic: Always be prepared to give an answer (and when you need to give an answer, use the best approach you know for figuring out that answer based on the time constraints and resources you have at hand). As an example, imagine the approach you might take for determining the number of Ping-Pong balls that fill up a room if you had to give an answer in 2 seconds. What if you had 2 minutes, an hour, or a week to come up with an answer? Would your approaches differ?

Heuristic: Use feedback to stabilize your design. Billy Vaughn Koen is a Professor Emeritus of Nuclear Physics as well as a philosopher of engineering. He taught people who designed nuclear reactors. I’m glad he taught them about the importance of feedback loops to verify design assumptions. And that is one reason why frequent delivery of software, retrospectives, and reviews are valued activities in agile development.

And oh yes, one last heuristic: Always give yourself a chance to retreat. Backing out of a half-baked or unworkable design is important if you don’t want to paint yourself into a corner.

As software designers we have many heuristics in our toolkit. If we know about design patterns, we use them. If we’ve built high-performance systems, we may have a wealth of heuristics for tuning cache performance. If we are familiar with Domain Driven Design concepts, our preferred way to structure a complex system is by identifying bounded contexts. For those unfamiliar with Domain Driven Design, a bounded context might be considered to be roughly equivalent to a subsystem or subdomain. The distinguishing characteristic of a bounded context is that within it there is a consistent, single, unambiguous meaning for business concepts and events. And we may visualize event flows and relationships between bounded contexts by drawing a context map.

Heuristics that guide our use of other heuristics. These heuristics tell us what to try next. The best examples I know of these heuristics are in Object-Oriented Reengineering Patterns. Each chapter in this book is a small pattern language, describing a rough sequence of actions for solving a particular system-reengineering goal. For example, chapter 3 is a pattern language for making “first contact” with a legacy system. Based on what you have just learned, the language spells out options for what to explore next.

First contact design pattern language

Heuristics that determine our attitude and behavior. Agile software designers value frequent feedback. That’s the premise behind frequently deploying working software in order to have its functionality exercised by actual customers. And one heuristic for reducing the risk of downtime when frequently deploying software is to use a blue/green deployment environment.

While we may have learned design patterns (or other published patterns, for that matter) by reading about them, most nitty-gritty design heuristics come from on-the-job experience. We learn a lot by living with the myriad design choices we make (and revisit) as our system’s functionality grows. We learn even more as we support a system over its lifetime. Our heuristics are shaped not only by the kinds of software systems we have designed, built, and maintained but also by the design culture at our places of work.

How do we improve as designers? Through designing and building software. By reflecting on that experience. And by polishing and refining our heuristics and sharing our cherished heuristics with each other.