
6/23/05 1 Corrections to Object Design first printing

Errata for Object Design: Roles, Responsibilities, and Collaborations
Last updated June 1, 2005
Page

Correction

xix Change sentence in second paragraph to “The informal tools and
techniques in this book don’t require much more than a white board, a
stack of index cards, a big sheet of paper, and chairs around a table.”

4 Change last sentence. Insert “primary” into phrase e.g. “but only one
primary role because…”

5 Delete sentence: If its information is being used solely to support its
service it assumes two stereotypes but only one role.”

21 getClass all places in the code should be getClass()
21 Figure 1-8 should have the beats(aPaper) message coming from the

GameCoordinator to the Rock object

���������	
����� �
��� ������

�������������

��������������������

�������

���������������������

!"�������������

#"��"����"��������
��

���������$���	�
��
��

�$����%���������

��������	��
�%���&'(�!"
��)*+���,%�����	
������

�"�#���"�������������	��
	
���#"��#
��$�����	����

�"���
�����-�����.���

6/23/05 2 Corrections to Object Design first printing

22 Figure 1-9 should have the beats(aPaper) message coming from the

GameCoordinator to the Rock object, and a false being returned by the
Rock to the GameCoordinator object

���������	
����� �
��� ������

�������������

�����
�����

��%�

�����

!"���������������

�����/�����#�����	�

���%�����"�������"��

���������	
�����

��������	��
�%���&'0�!"
��)*+���,%�����	
������

�"�#���"�������������	��
	
���#"��#
�������	����

���.����"
����
��%�����
����"��	�%����	
�����"
���

���"�
,%��

22 Coding errors. See corrections below

public interface GameObject {
 public boolean beats(GameObject o);
 public boolean beatsRock ();
 public boolean beatsPaper();
 public boolean beatsScissors();
}

23 in Rock code…

public class Rock implements GameObject {
 public boolean beats(GameObject o) {
 // The receiver is a Rock. Ask the argument about a rock.
 return !o.beatsRock();
 }

6/23/05 3 Corrections to Object Design first printing

 public boolean beatsRock() {
 // Return true since ties answer false
 return true;
 }
 public boolean beatsPaper() {
 //A Rock doesn’t beat a Paper
 return false;
 }
 public boolean beatsScissors() {
 // A Rock beats a Scissors!
 return true;
 }
}

23 in Paper code…

public class Paper implements GameObject {
 public boolean beats(GameObject o) {
 // The receiver is a Paper. Ask the argument about paper.
 return !o.beatsPaper();
 }
 public boolean beatsRock() {
 // A Paper beats a Rock
 return true;
 }
 public boolean beatsPaper() {
 // Return true since ties answer false
 return true;
 }
 public boolean beatsScissors() {
 // A Paper doesn’t beat a Scissors!
 return false;
 }
}

62 Delete callout that starts, “If you insist on using a computer…”. It is a
duplicate of the callout on pages 128

79 First paragraph, line 6, should into be “in to”?
83 Top paragraph “The application will maintain additional user-supplied

information and construct account history from online and other banking
transactions” change to “and construct an account history from online
and other banking transactions”

85 The repeated used of “whom” in the top paragraph seems stuffy. It may
be right, but to Alan’s ears sounds wrong.

91 Callout “candidate’s” should be “candidates’”
92 Change last paragraph to read:

The synonyms for Properties, a class defined in the Java libraries, include
these words: characteristics, attributes, qualities, features, and traits.

6/23/05 4 Corrections to Object Design first printing

Although “attribute” or “feature” might work “characteristic” seems
stuffy and “quality” seems strained.

101 The type setting on the figure 3-3 CRC card’s comments are done poorly.
Especially “Check on third-party products”.

114-
115

On page 115 in the section on “additional responsibilities that are more
specific” we duplicate the last three paragraphs from the previous page’s
list of responsibilities we found earlier. They should be omitted.

Insert these two additional responsibilities into the list on p. 115 (in order
of steps):
Verify that student is known to the system. (From step 1. Probably can be
assigned to some object that coordinates registration and interacts with a
database of registered students.)

Maintaining a proposed schedule and possibly reserving slots in courses
until confirmed by a student. (From step 8. Schedules should know what
their status is. Managing “course reservations” seems like a
responsibility for a new object concerned with managing student-course
registration status.)

123 Last line “stimulus” needs to be plural “stimuli”
126 In callout replace “they” with “you”
127 The description on the EmailAddress card is very wrong. Delete the

sentence “It also knows information about both the sender and the
receiver it uses during guessing.”

130 Lists Rebecca, Wirfs-Brock as author of DOOS instead of Rebecca
Wirfs-Brock

132 Next to last paragraph, middle “essentially introduces a new sub design
problem” should be changes to read “essentially introduces a new
subproblem.”

142 In the blue example “MoneyMarket Accounts” should be one word
“MoneyMarketAccounts”

143 Caption on figure 4-4 should read “A BankAccountBean is the sum of its
one primary and multiple secondary roles.”

144 Add “may” to first sentence: Objects may know and do similar things,
but because they do them differently, they may require different
interfaces and implementations.

163 Second bullet misspelled “responsibilities”
176 Run on sentence in first paragraph of Simulation Collaboriatons. It reads

“It helps you to fin new objects (you will likely have to invent new
objects for controlling the flow of work or responding to events), to
discard ill-conceived objects, and to elaborate any vague responsibilities,
and it results in responsibilities shifting from one object to another.”
Break it in two: “It helps… and to elaborate any vague responsibilities.
As a result, responsibilities often shift from one object to another.”

178 Just before “Set the Boundaries”. delete the for in “for which details are
best left out.”

6/23/05 5 Corrections to Object Design first printing

191 Second callout should read:
“Leaving things in an inconsistent state shifts the burden to clients to
figure out how to recover—something they may not always be equipped
to do.”

192 “which relations between collaborators should be static and which should
be fixed” should be changed to “which relations between collaborators
should be dynamic and which should be fixed”

194 Our URL should read like others on the page, including
“http://www.wirfs-brock.com”

195 Misspelling of Douglas Hofstadter at the very bottom of the page
205 In Figure 6-5 both places where “coordinators” is mentioned should be

replaced with “controllers”.
221 In callout, remove parentheses and rephrase: When you discover a new

role, create a CRC card for it. Note on each candidate’s card that plays
this role the fact that they do.

264 Book title should be The Elements of Style. Missing “of”.
301 Delete first two sentences from callout. Make it start with the sentence

that starts: “Concentrate on who should be responsible…”
306 Figure 8-7 caption should read “UserSession takes one of two branches.”
308 Remove callout. It is identical to the callout on p. 156.
324 Callout. Remove the phrase “ are informal tools for capturing” and

replace with “capture”.

Questions and clarifications:

Rock, Paper, Scissors Example on pages 20-24. A reader, after pointing
out an error in the errata for the Rock, Paper, Scissors example (the
correction on page 21 should refer to figure 1-8) asks:

I don’t understand the purpose for three added methods,
beatsRock(), beatsPaper(), and beatsScissor(). Since a rock only
calls beatsRock() and a paper only calls beatsPaper(), then why do
we need three methods in this interface? Why not just have a
beatsMe() method that is implemented for the particular class
being defined?

The example in the book is not a practical demonstration of how to put
double dispatching to work, but a rather contrived example. With both
coding errors combined with diagramming errors, it makes it even more
difficult to understand. If I could, I would yank it from the book and
replace it with a more realistic example that isn't so contrived. For one
thing, this doesn't report "ties" where a rock is asked if it beats a rock.
(There really should be a "yes" "no" and "tie" answer possible.) But in
spite of that, there are still lessons to be learned from this example.

The idea behind double dispatching is to make a decision by sending
specific messages to an object passed in as an argument in lieu of writing

6/23/05 6 Corrections to Object Design first printing

any if-then-else-if or case statements in the code. In this case for rocks,
papers, and scissors, we want to make a decision based on two objects. We
start the ball rolling by asking the first object “does it beat the second?”
(which is passed in as the argument to beats(). To avoid any conditional
checks, we want to turn around and negate the answer to the question
beatsX?, where X is the specific type of object we sent the original
message to.

If we implement 3 classes for the rocks, papers, scissors game, each that
implements beats(), beatsRock(), beatsPaper, and beatsScissor() we can
accomplish this.

To illustrate, let me work through the case where we want to try to answer
the question "does a rock beat a scissors?"

A rock should answer "no" to the question "do you beat a rock?", "yes" to
the question "do you beat a scissors?", and "no" to the question, "do you
beat paper?"

To accomplish this, the beats method for rock turns around and asks the
specific question "do you beat a rock" to whatever the argument passed in
to its beat method, and then negates that answer and returns that to the
game coordinator (if a scissors doesn't beat a rock, and returns false, by
negating that answer and returning it to the game coordinator, the rock
gets this question answered without having to do any checking on type.
Sure, we could have done a case statement and had one method for each
object, beats, but that wouldn't have illustrated the concept of double
dispatching where there are no case statements or conditionals and still
questions are being answered.)

The real payoff of double dispatching isn't in some silly game example
like this, but when you want to make changes to code (add more cases that
can be handled, without having to modify existing code that works). The
example on pages 175-177 in the book is a more realistic example of the
concept, but even it is overly simplified.

