
 

© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating 

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. 

 
For more information, please see www.ieee.org/web/publications/rights/index.html. 

 

 
www.computer.org/software 

 
 
 
 
 

 
 
 
 
 

Design for Test 

 
Rebecca J. Wirfs-Brock 

 
Vol. 26, No. 5 

Sept./Oct. 2009 
 
 
 
 
 
 
 
 
 
 

This material is presented to ensure timely dissemination of scholarly and technical work. 
Copyright and all rights therein are retained by authors or by other copyright holders. All 

persons copying this information are expected to adhere to the terms and constraints 
invoked by each author's copyright. In most cases, these works may not be reposted 

without the explicit permission of the copyright holder. 
 

 



92 I E E E  S O F T W A R E    P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y  0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0  ©  2 0 0 9  I E E E

design
E d i t o r :  R e b e c c a  J .  W i r f s - B r o c k   W i r f s - B r o c k  A s s o c i a t e s   r e b e c c a @ w i r f s - b r o c k . c o m

A s developers, we’re expected to turn out 
implementations proven by tests that we 
or others have written. Doing otherwise is 
considered unprofessional. But does code 
that’s designed to be testable differ funda-
mentally from code that isn’t? What does it 

mean to design for test?

Making Code Testable
Advocates of test-driven development (TDD) write 
tests before implementing any other code. They take 

to heart Tom Peters’ credo, “Test 
fast, fail fast, adjust fast.” Testing 
guides their design as they imple-
ment in short, rapid-!re “write 
test code—fail the test—write 
enough code to pass—then pass 
the test” cycles. Regardless of 
whether you adhere to TDD de-
sign rhythms, writing unit tests 
forces you to articulate pesky edge 
cases and clean up your design.

Michael Feathers has cheekily de!ned a leg-
acy system as code that doesn’t have tests. He 
says that to be testable, code needs appropriate 
seams. In Working Effectively with Legacy Code 
(Prentice Hall, 2005), Michael de!nes a seam as a 
place where you can alter your program’s behav-
ior without having to rewrite it. Every seam has an 
enabling point—a place where you can decide to 
use one behavior over another. There are two main 
reasons to include these seams:

so that you can insert test code that probes the  
state of your running software and
to isolate code under test from its production  

environment so that you can exercise it in a con-
trolled testing context.

You can design seams in different ways, rang-
ing from preprocessing "ags and conditionals to 
adjusting class paths and dynamically injecting de-
pendencies between collaborators. You also need 
to isolate and encapsulate dependencies on the ex-
ternal environment. All these techniques let you in-
sert code that exercises your software without al-
tering the code being tested.

In addition to inserting appropriate test hooks, 
you should write your code so that it doesn’t have 
unnecessary dependencies on concrete class names, 
values, and variables—anything that you might 
want to replace in a test environment. You can do 
this in many ways—for example, by

using con!gurable factories to retrieve service  
providers,
declaring and passing along parameters instead  
of hardwiring references to service providers,
declaring interfaces that can be implemented by  
test classes,
declaring methods as overridable by test  
methods,
avoiding references to literal values, and 
shortening lengthy methods by making calls to  
replaceable helper methods.

In short, you need to provide appropriate test 
affordances—factoring your design in a way that 
lets test code interrogate and control the running 
system.

On the surface, this sounds like nothing more 
than good design practice. And largely, this is true. 

Rebecca J. Wirfs-Brock 

Ideas must be put to the test. That’s why we make things; otherwise they would be no more than ideas. 
There is often a huge difference between an idea and its realisation. —Andy Goldsworthy

Design for Test



 September/October 2009   I E E E  S O F T W A R E  93

DESIGN

But adding the capability to transparently insert 
test code has consequences. It can add extra wiring, 
assembly, and interaction steps to your software. 
Understanding how collaborations are established 
can become slightly more dif!cult because wiring 
and assembly steps are often accomplished by indi-
rect dependency-injection techniques.

This approach can also involve a lot of !ddling 
and rework if your code wasn’t designed this way 
from the start. My colleague Don Birkley observes,

One critical aspect of design for test is to keep 
classes designed so that in vitro tests are even 
possible. This involves not only clean well-
factored design, but also creating the context 
objects to supply the “nutrients” and “oxy-
gen” for the objects under test.

Code that’s designed for test must continually be 
tested. If it isn’t, any test affordances you add are 
purely speculative.

Balancing Test and Product Code
So far we’ve been talking about testing from the 
developer’s perspective on writing unit tests. But 
what do testers need from a design? Performance-
test engineers need the ability to predictably set up, 
control, and measure software execution. Some-
times this requires designing extra hooks that let 
them precisely con!gure and control characteris-
tics affecting software performance. And some-
times these extensions work their way into prod-
ucts, because sophisticated customers also !nd 
performance-tuning capabilities useful.

Testers also like to automate their tests. For this 
to be feasible, they need predictable, stable behav-
ior at points where they stimulate software and 
measure its behavior. It can be disastrous when 
gratuitous design changes break a lot of tests. Un-
less I know how tests exercise my design (and how 
they verify its behavior), as a designer I won’t know 
what’s fair game to change and what behavior I 
must preserve. But whatever my software updates, 
logs, or reports is fair game for a test to examine. 
However, I need to know what the tests want to 
examine and whether I think it’s reasonable for 
test code to do so. To reduce both design and test 
rework, the contractual agreement between what 
a design produces and what tests consume should 
be established early. It’s much harder to wedge in 
consistent error-messaging and logging strategies 
as a design afterthought.

An agile development team’s manager was 
frustrated by the increasing dif!culty her team 
had making any signi!cant design changes to the 
production system. After building extensive test 
suites, they were confronted with a tough choice: 

either make desired changes to product code and 
break quite a few tests, or preserve the tests and 
create an awkward design solution. Her team took 
their best shot at de!ning what they expected to 
be the “stable” contract between test and product 
code. Sometimes you just can’t make nontrans-
parent design changes to support new product 
features. This isn’t just speci!c to tests. Part of 
evaluating any design change is understanding its 
impact on the overall system. Tests are just one of 
the system parts that might be impacted. You can’t 
realistically expect that tests or the software’s de-
sign won’t have to change to accommodate new 
requirements. To make rational decisions about 
how to support changing requirements, you need 
to manage the design of production code, unit 
tests, and acceptance tests as codependent assets.

Promoting Repeatable Behavior
Tests help de!ne and constrain behaviors. Still, 
they don’t guarantee that software works predict-
ably. But as any experienced designer of complex 
software knows, the more you can pin down your 
design and make it exhibit repeatable behavior, 
the easier it will be to maintain. Nondeterministic 
behavior makes reproducing certain bugs nearly 
impossible. So, compiler writers know it’s impor-
tant that, given the same source !les, compilers 
should generate identical, not equivalent, code. 
Doing something as innocuous as using a nonde-
terministic hash value, such as object identity, for 
a table lookup can throw a monkey wrench into 
the works.

That’s also why designers of real-time systems 
have their own grab bag of established design 
techniques to make their software behave more 
deterministically. It’s also why those who write 
random-number generators know to design their 
code to return the same sequence, given the same 
seed. And designers of complex calculations take 
the time to design consistent, stylized code. Repro-
ducible behavior is inherently easier to test. If tests 
place constraints on a design, so too, should the 
necessity to reproduce, isolate, and !x bugs.

I f you design for testing, debugging ease, and 
repeatable behavior, does it ever get easier and 
more intuitive? Or does it always take signi!cant 

time and effort? Designing for test involves disci-
pline and vigilance. I’m not sure it ever becomes 
easy. But it can become more routine, especially if 
you treat the design of tests and of the code that sat-
is!es them as complementary parts of your develop-
ment process.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock Associates. 
Contact her at rebecca@wirfs-brock.com; www.wirfs-brock.com.

The more  
you can pin 
down your 
design and 

make it exhibit 
repeatable 

behavior, the 
easier it will  

be to maintain. 


