
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

Designing in the Future

Rebecca J. Wirfs-Brock

Vol. 26, No. 1

January/February 2009

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

design
E d i t o r : R e b e c c a J . W i r f s - B r o c k n W i r f s - B r o c k A s s o c i a t e s n r e b e c c a @ w i r f s - b r o c k . c o m

Designing in the Future
Rebecca J. Wirfs-Brock

The best preparation for good work tomorrow is to do good work today.—El­­bert Hubbard

W
hat can we do better to be prepared
for what lies ahead? I wasn’t surprised
when several thoughtful folks collec-
tively hemmed and hawed when I asked
them to speculate on future design
trends. As Niels Bohr observed, “Pre-

diction is very diffi cult, especially if it’s about the fu-
ture.” However, they were willing to make modest

conjectures about what will con-
tinue to be important.

several Conjectures
Dave Thomas posited that some
design ideas that were important
in his past shouldn’t be ignored.
As fads come and go, data-driven
design techniques such as decision
tables, rules, and state machines
will continue to be important

mechanisms to manage complexity. (Dave wrote
about the practical use of decision tables in “Agile
Programming: Design to Accommodate Change,”
IEEE Software, May/June 2005, pp. 14–16.) But
we shouldn’t ignore the potential of powerful func-
tional and map-and-reduce algorithms to help us
more readily solve massive data-crunching prob-
lems. Choosing the right tool for the job can make
our jobs signifi cantly easier.

Even so, Bob Martin doesn’t hold out hope that
emerging technologies will make our jobs that much
easier:

Some fol­­ks have put a great deal­­ of hope in
technol­­ogies [that automatical­­l­­y generate
code from model­­s]. There is no l­­anguage that
can el­­iminate the programming step, because

the programming step is the transl­­ation from
requirements to systems irrespective of l­­an-
guage. Some fol­­ks have specul­­ated that we’l­­l­­
have intel­­l­­igent agents based on some kind of
AI technol­­ogy, and that these agents wil­­l­­ be
abl­­e to write portions of our programs for us.
The probl­­em with this is that we al­­ready have
intel­­l­­igent agents that write programs for us.
They are cal­­l­­ed programmers. It’s diffi cul­­t to
imagine a program that is abl­­e to communi-
cate to a customer and write a program better
than a human programmer.

Jim Coplien, in his forward to Martin’s Cl­­ean
Code: A Handbook of Agil­­e Software Craftsman-
ship (Addison-Wesley, 2009), remarks that

it is crucial­­ to continuousl­­y adopt the humbl­­e
stance that the design l­­ives in the code. And
whil­­e rework in the manufacturing metaphor
l­­eads to cost, rework in design l­­eads to val­­ue.
We shoul­­d view our code as the beautiful­­
articul­­ation of nobl­­e efforts of design—design
as a process, not a static endpoint. It’s in the
code that the architectural­­ metrics of coupl­­ing
and cohesion pl­­ay out.

Jim also notes a shift from late-1990s notions of
design driven only by the tests and the code to one
where responsible designers give some time to think-
ing and planning at a project’s outset. Although in
Jim’s view, thinking and planning are important to
ensure design quality, he also admonishes us to

pay attention to smal­­l­­ things, but al­­so … be
honest in smal­­l­­ things. This means being hon-

18	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

design
E d i t o r : R e b e c c a J . W i r f s - B r o c k n W i r f s - B r o c k A s s o c i a t e s n r e b e c c a @ w i r f s - b r o c k . c o m

	 January/February 2009 I E E E S o f t w a r E 	 19

Design

est to the code, honest to our col­­-
l­­eagues about the state of our code
and, most of al­­l­­, … honest with our-
sel­­ves about our code.

Focusing on the Details
I remember being exposed to this idea of
quality in small things early in my engi-
neering career. A wiser developer asked
me to change my linker to report “No er-
rors,” “1 error,” and “23 errors” instead
of lumping everything under a generic “xx
error(s)” message. At first, I was annoyed
by his nit-picky suggestion even though I
needed to add only one extra If statement.
As I continued to work with more expe-
rienced, quality-minded designers, their
values rubbed off on me. I learned that fo-
cusing on just these kinds of details set the
tone for everything you do as a designer.
In hindsight, my attitude and sense of aes-
thetics—not my code—needed the bigger
adjustment.

Thinking at Opportune Times
Attention to details is important. Thinking
and planning add value, too. How much
value to place in up-front thinking is a hot
topic of debate among design gurus (for ex-
ample, see the podcast discussion between
Bob Martin and Jim Coplien at www.
infoq.com/interviews/coplien-martin-tdd).

Where you weigh in on the relative mer-
its of up-front thinking puts you squarely
in either the enthusiastic evolutionary-
design camp or the think-a-bit-first camp.
In some circles, any up-front design think-
ing is equated with big design up front
(BDUF), which is almost always equated to
wasted effort. But why must we choose be-
tween “thinking then doing” and “think-
ing while doing”? Those who encourage
such polarized views are creating a false
dichotomy. Up-front thinking is rarely
wasted effort, especially when tackling
complex or novel design problems.

I suspect it will require more experi-
mentation before we come to a deeper
understanding of good patterns for fitting
various design rhythms and design think-
ing into development. But we won’t make
progress if we let the gulf widen between
the “thinking then doing” and “thinking
while doing” camps. There’s a time and
place for both. Simply because we refine
our design ideas doesn’t mean we should
always test, code, and refactor our way

to an acceptable solution. Sometimes we
need to pause, think, and discuss a while
before we start on a test-code-refactor
path.

The Design Value of Well-
structured Requirements
I experienced this “wait, give me more
time to think!” feeling last summer
while attending Steve Freeman and Mike
Hill’s tutorial Style and Taste in Writing
Fit Documents (www.exdriven.co.uk/
fitstyleandtaste/Style%20and%20Taste.
pdf). Fit, a testing framework conceived
by Ward Cunningham, allows “custom-
ers, testers, and programmers to learn
what their software shoul­­d do and what it
does do” (http://fit.c2.com). Fit automati-
cally compares expected values written in
tabular form to results returned from run-
ning the program.

Steve and Mike had observed teams
struggling to use Fit documents effectively.
They wanted to teach us how to spot and
correct problems with poorly specified
Fit tables. So, they gave us several refac-
toring puzzles to solve, working in pairs.
Maybe the problem was that it was the
early morning hour or the morning after
the conference banquet, but we all strug-
gled to refactor Fit documents in the time
allotted.

The tutorial exercises reinforced my
experience that detailed pattern matching,
hypothesizing about correlated factors,
and invention of simplifying concepts and
abstraction is hard work. These activities
take time and the right frame of mind.

Feeling rushed doesn’t help. Steve and
Mike hadn’t poorly timed their exercises;
they’d just given us a good taste of wres-
tling with moderately complex, poorly
articulated real-world problem specifica-
tions. Now imagine how much more dif-
ficult a 20-by-20 Sudoku puzzle is than
the traditional 9-by-9 grid. Although their
problems were realistic, I’ve seen much
more complex requirements.

As I was solving their Fit refactoring
problems, I couldn’t avoid thinking about
how I might design the code to work. If
I simply knew the meaningful factors, I
might structure a set of extensible decision
tables. But because I wasn’t handed a clear
problem statement, I didn’t feel overly
confident in that design approach.

T he consequences of poorly structured
requirements obviously have enormous
consequences on design. Given that

problems rarely are well formed, what
responsibility should we designers take
to bring clarity to the problem? Whether
this is official design work or not, I keep
backing up to clarify problems in order to
bring clarity to my design. If I don’t, com-
ing up with simple, comprehensive solu-
tions on the fly is difficult. Messy prob-
lems don’t lead to clean design. And small
refactorings don’t always collectively add
up to appropriate design abstractions.
I hope the future will yield better tech-
niques for understanding and structuring
problems as well as design solutions.

But is there any new, earthshaking
technology that’s ready to rock the soft-
ware design world? I’m not sure. But
I know I can’t wait. From my vantage
point, becoming a better designer means
getting better at what we do now while
not getting lulled into accepting the sta-
tus quo. We can and should expect better
software tools, technologies, and develop-
ment practices. Design rhythms and ritu-
als will change, too. To stay effective as
designers, we need to continue to learn,
adapt, keep an open mind, and work to
perfect our craft.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates. Contact her at rebecca@wirfs-brock.com; www.
wirfs-brock.com.

Up-front thinking
is rarely wasted effort,
especially when tackling

complex or novel
design problems.

