Designing Reliable
Collaborations

Rebecca Wirfs-Brock
Wirfs-Brock Associates
rebecca@wirfs-brock.com

i Agenda

= How reliable does your software need to be?
® Collaboration

m Use-case and program-level exceptions and
errors

® Exception guidelines
® Recovery strategies
®m Making collaborations more reliable

Copyright 2003, Wirfs-Brock Associates, Inc.

i . Reliability Design Challenges

“The consequences of structural failure in
nhuclear plants are so great that
extraordinary redundancies and large safety
margins are incorporated into the designs.
At the other extreme, the frailty of such
disposable structures as shoelaces and
light bulbs, whose failure is of little
conseqguence, is accepted as a reasonable
trade-off for an inexpensive product. For
most in-between parts or structures, the
choices are not so obvious.”

—Henry Petroski, To Engineer is Human

Copyright 2003, Wirfs-Brock Associates, Inc.

i . Software Design Considerations

® Most software need not be impervious to
failures or misuse

m But it shouldn’t easily break, either

® A large part of design involves
accommodating situations that cause your
software to veer from the normal path

m Designing certain collaborations to be more
reliable increases your software’s ability to
handle anticipated problems

Copyright 2003, Wirfs-Brock Associates, Inc.

s How Much Should We Think About
Failure?

® The more serious the consequences of
failure, the more effort you need to expend.
Alistair Cockburn suggests four levels of
criticality:
-1 Loss of comfort
-1 Loss of discretionary money
-1 Loss of essential money

1 Loss of life

Copyright 2003, Wirfs-Brock Associates, Inc.

\-’B But Consider...

m Software that runs unattended for long
periods of time under fluctuating operating
conditions

m Software that “glues” larger systems
together in spite of communications
glitches and data errors

®m Components that “plug in” and run in
different environments

®m Consumer products

Copyright 2003, Wirfs-Brock Associates, Inc.

s When Should We Think About

Failure?

® What the inventor of modern exception
handling concepts says:

“I have long (but quietly) advocated dealing
with exception handling issues early In the
design of a system. Unfortunately, there is a
natural tendency to focus on the main
functional flow of a system, ighoring the
impact of exceptional situations until later.”
—John Goodenough, Advances in Exception
Handling Techniques

Copyright 2003, Wirfs-Brock Associates, Inc.

\-’B When Do We Think About Failure?

® People typically think about failure only after
they’'ve described “normal” conditions:

“IDescribing exceptions] is often tricky, tiring, and
surprising work. It is surprising because quite often
a question about an obscure business rule will
surface during this writing, or the failure handling
will suddenly reveal a new actor or new goal that
needs to be supported. Most projects are short on
time and energy. Managing the precision level to
which you work should therefore be a project
priority...”

— Alistair Cockburn, Agile Software Development

Copyright 2003, Wirfs-Brock Associates, Inc.

i Why Do Architects Want Us To Think
About Exceptions?

“At an architectural level, the basic patterns,
policies, and collaborations for exception
handling need to be established early,
because it is awkward to insert exception
handling as an after thought.”

—Craig Larman, Applying UML and Patterns

Copyright 2003, Wirfs-Brock Associates, Inc.

i Reasons To Think About Them Early,
Often, Sooner AndLater

m Usability may be affected

-1 Consider software that enables a severely
disabled user to construct messages and
communicate with others. Shouting “stack
overflow!” or “network unavailable!” isn’t
acceptable

® The degree to which a user can or should be
involved in exception handling has profound
design implications

® Solutions may not be obvious or “easy”.
Experimentation may be required

Copyright 2003, Wirfs-Brock Associates, Inc.

i Strategies For Increasing Reliability

® Focus on where to make your design resilient.
Identify key collaborations

® Work incrementally on developing consistent
collaboration styles. As you work on representative
collaborations, come up with policies and
repeatable patterns

® Consider exception design early, when you can
iImpact system architecture
1 Characterize different trust regions

- Develop control centers, reporting, and recovery
strategies

m Simplify your programming. Reduce exception
handling clutter

Copyright 2003, Wirfs-Brock Associates, Inc.

10

Collaboration

s Definition: Collaborate

® 1. To work together, especially in a joint
intellectual effort

-1 This definition is collegial: Objects working together
toward a common goal. Both client and service provider
can be designed to assume that if any conditions or
values are to be validated, they need be done only once

| am sending you a request at the right
time with the right information

e

UserLoginController Passw ordChecker

H isValid(password) ﬂ

| assume that | don’t have to check to see
that you have set up things properly for
me to do my job

Copyright 2003.
12

s Definition: Collaborate

®m 2. To cooperate treasonably, as with
an enemy occupation force*

-1 If a collaborator can’t be trusted, it doesn’t
mean it is inherently more unreliable. But it
may require extra precautions

1 Pass along a copy of data instead of
sharing it

-1 Check on conditions after the request
completes

-1 Employ alternate strategies when a
request fails

*From The American Heritage Dictionary

Copyright 2003, Wirfs-Brock Associates, Inc.

13

i Fulfilling Requests From Unknown Or
Untrusted Sources

® When you are designing an object that
handles requests from unknown sources,
you may heed to take care, too

-1 When receiving requests untrusted sources,
you are likely check for timeliness,
relevance, and correctly formed data

® But don’t designh every object to collaborate
defensively

-l It leads to poor performance

-1 Redundant checks are hard to keep
consistent and lead to brittle code

Copyright 2003, Wirfs-Brock Associates, Inc.

14

i Design Responsible Communities

® Determine where collaborations can be
trusted

-1 Carve your software into regions where
“trusted communications” occur. Objects in
the same trust region communicate

collegially, although they still encounter
exceptions and errors

-1 Some objects still have to check for valid
requests... but not all do

-1 Give objects at the “edges” and borders

responsibilities for verifying correctly formed
requests

-1 Assign objects that already have control and
coordination responsibilities added responsibility
for recovering from exceptions

-1 Make objects that are reliable “service providers”
take on more responsibility

Copyright 2003, Wirfs-Brock Associates, Inc.

15

i .

Speak for Me
enables a
severely
disabled user to
communicate

“Build A Message” Use Case

Actor Actions

System Responsibilities

“Click” to start software
speaking

Start building a message

Repeat until . ..

Optionally, “click” to select
letter

Optionally, “click” to select

word

Optionally, “click” to select
sentence

Determine what to speak
(letter, word, sentence, or
space)

Speak letter

Add letter to word

Speak space

Add word to end of
sentence

Start new word

Speak sentence

Add sentence to end of
message

Start new sentence

.. a command is issued

Process command
(separate use cases)

Copyright 2003, Wirfs-Brock Associates, Inc.

16

i . Implications of Trust

® In Speak for Me, all objects in the
application “core” are within the same trust
region

® Objects in the application control and
domain layers assume trusted
communications between each other

® Objects at the “edges”—within the user
interface and in the technical services
layers—make sure outgoing requests are
honored and incoming requests are valid

Copyright 2003, Wirfs-Brock Associates, Inc.

17

i . Objects At The “Edges” Take On
Added Responsibilities

Debounces \Selector Presenter
eye blinks |

adds itself when selected \ordlnate eve% Controls pacing
Guess <~ MessageBuilder %i Timer

knows contents and

delivers itself
Collaborates
with Mailer Message Guesser | coordinates guessing
that handles
exceptlons ‘ | ASSUMES
Guess “trusted”

Mailer Dictionaries requests

guess letters, words, and sentences

Assumes
“trusted”
requests

\-’B Collaboration Cases To Consider

m Collaborations between objects...

_1 that interface to the user and the rest of the
system

-l inside your system and objects that
interface to external systems

-l in different layers or subsystems

-1 you desigh and objects designhed by
someone else

Copyright 2003, Wirfs-Brock Associates, Inc.

19

Use Case-Level and
Program-Level Exceptions
and Errors

! Definition: Exceptions

® Exceptions are deviations from the normal
course that we anticipate

® They should be handled by getting the
software into a predictable state and
continuing on

® How to resolve exceptions can be open to
debate

-1 What if a sensor reports a fault?
-1 What if an order can’t be fulfilled?
-1 What if a connection is dropped?

Copyright 2003, Wirfs-Brock Associates, Inc.

21

s Definition: Errors

® Errors are when things unexpectedly go
wrong. They can result from malformed
data, bad programs or logic errors, or
broken hardware

® Little can be done easily to “fix things up
and proceed”

® Recovery from errors requires drastic
measures

- What if the disk is full?
-1 What if equipment cannot be provisioned?
-1 What if the OS crashes?

Copyright 2003, Wirfs-Brock Associates, Inc.

22

\-’B Recoverable Vs. Unrecoverable Use
Case Exceptions

® Recoverable exceptions can be handled
deftly enabling the user to continue his or
her task

® In other cases, the user won’t be able to
continue as planned but the software won't
break. These are unrecoverable exceptions

Copyright 2003, Wirfs-Brock Associates, Inc.

23

i An Example: Is Invalid Password An
Exception Or Error?

®m Mistyped passwords are a regular, if infrequent
occurrence

®m We want to react to this condition by giving the
user a way to recover. So we view it as an
exception

®m Most use case level descriptions define some
exceptions and how they should be addressed:

- Invalid password entered—After three incorrect
attempts, inform the user that access is denied to
the online banking system until she contacts a
bank agent and is assighed a new password.

® ...but rarely do they mention errors or
programming level exceptions

Copyright 2003, Wirfs-Brock Associates, Inc.

24

i . Programming Exception Basics

® An exception detected during program
execution leads some object or component
to veer off its “normal” path and fail to
complete an operation

® Depending on your desigh, some object
raises an exception, while another may
handle it

® Handling an exception, means recovering
by putting your software into a predictable
state

® Left unhandled, exceptions lead to system
failure, just as errors do

Copyright 2003, Wirfs-Brock Associates, Inc.

25

i . Exceptions Are Signaled And
Handled

third login attempt raises exception

A

Presentation Application Userlogin
rdin r Coordinator Controller
1
Iogm(usenpasswordL
login(user,password)

<<exception>>

<<exception>> -

HEEN

one or more of the callers handles the exception

Programming languages define mechanisms for
programmers to declare exception conditions (as
Classes), sighal their occurrence, and to write

exception handling code

Cop, _)

26

_/B The Anatomy Of Java Exception Handling

® In Java, when you want to handle
exceptions, you make calls to exception-
raising code within a try-catch block

public void doSomething() throws ExceptionA, ExceptionC{

try{
// this may throw ExceptionA or B \

}
; catch(ExceptionB eb){ == Unhandled,
Recovery N\// this may throw ExceptionC checked
code }_ exceptions must
ﬂ;;illlgin - be declared
} GRS
// do something else This always
} executes

Copyright 2003, Wirfs-Brock Associates, Inc.

27

\-’B The Mismatch Between Use Case
And Program Exceptions

® Exceptions described in use cases are
fundamentally different from programming
exceptions

-1 Use case exceptions reflect the inability of
an actor (a user) to accomplish their
desired task using the software

-1 Object exceptions reflect the inability of an
object to perform a requested operation

® There isn’t a direct correspondence
between the two

Copyright 2003, Wirfs-Brock Associates, Inc.

28

_’B The Mismatch Between Use Case And
Program Exceptions

® A single use case step can result in
thousands of requests between
collaborating objects, any number of which
could cause numerous object exceptions

® Just because someone describes an
exception condition in a use case doesn’t
mean it will happen

-1 Your implementation may successfully
side-step around the potential exceptional
case

Copyright 2003, Wirfs-Brock Associates, Inc.

29

\-’B Even More To Consider

®m Goals may be compromised because of
exception conditions. From the user’s
perspective, recoverable exceptions often
represent a series of compromises

1 Part of a book order is out of stock. The user can

choose to:
 split the order and back order the out of item
stock items,

 ship what’s available now and ship things
when they are in stock,

e cancel the order, or
 modify the order

® This forces the user to unexpectedly make
decisions and “steer” the darn software

m Sometimes users should be actively engaged in
“steering” the system. Sometimes this is
inappropriate

Copyright 2003, Wirfs-Brock Associates, Inc.

30

s What To Do About The Mismatch

m Stick to describing user-level exceptions and how
they should be resolved in use case
-1 Keep use case descriptions simple... don’t tack on

to use case descriptions detailed design,
architecture, or implementation-level concerns

-1 Keep the user’s needs in mind

- View use case exceptions—at whatever level of
detail they are described—as guides, not
prescriptions for object design solutions

®m Document program level exceptions in code

m Create additional design-level documentation or
diagrams to illustrate general exception handling
policies and tricky solutions

Copyright 2003, Wirfs-Brock Associates, Inc.

31

Program Exception Declaration
and Handling Guidelines

YB Exception Desigh And Reliable
Collaborations

® Principles of exception handling design
-1 Use exceptions to represent emergencies

-1 Handle exceptions close to the problem as
you can

-1 Separate concerns: untangling exception
handling from normal execution

- Remove redundancies

-1 Provide enough information so handlers
can make informed decisions

-1 Consistency

Copyright 2003, Wirfs-Brock Associates, Inc.

33

\.’B Use Exceptions Sparingly

® “Use exceptions to report emergency
conditions.”—Johannes Siedersleben,
ECOOP 2003 Workshop on Exception
Handling

® Use exceptions to report abnormal and rare
events, not for normal control flow

- A find operation may find zero, one, or
many objects. These aren’t exceptions, just
expected results

-1 On the other hand, a dropped database
connection is an emergency that the caller
heeds to be notified about

Copyright 2003, Wirfs-Brock Associates, Inc.

34

YB Why Use Exceptions Only For

_ ~ Emergencies?
® Exceptions don’t cost anything in terms o

performance until they are raised or thrown

® Programs with lots of exceptions run very
slowly
public static boolean testForintegerl(Object x){
try {Integer | = (Integer) x; return true;} v;,\O‘N
catch (Exception e) {return false;}} ,(60““\

e

public static boolean testForinteger2(Object x){
return x instanceof Integer;}

® If the normal path of execution is tangled with
lots of exception handling code, it is hard to
read

Copyright 2003, Wirfs-Brock Associates, Inc.

35

YB Don’t Use Exceptions To Indicate Typical
Conditions

®m Avoid using exceptions to indicate conditions that
can reasonably be expected as part of the typical
execution sequence

- In Java, FilelnputStream.read() returns -1 at end of
file
- EOF is viewed as a normal condition
encountered when reading a file

- In Java StringTokenizer, you ask hasMoreTokens()
before calling nextToken(). Calling nextToken()
after hasMoreTokens() returns false, results in an
unchecked NoSuchElementException

- “End of tokens” is viewed as an abnormal
condition because you are supposed to check
first

Copyright 2003, Wirfs-Brock Associates, Inc.

36

\-’B Return Results Instead

® Declare distinguished objects

-1 Instead of throwing NoSuchElement
exception, the StringTokenizer designer
could have returned an “emptyToken”

- In SpeakForMe! the Guesser returns a
NoChoice object if there aren’t any more
words, letters or sentences to present to
the user

Copyright 2003, Wirfs-Brock Associates, Inc.

37

_’! Results Can Be Distinguished From

Exceptions

third login attempt raises exception

.

Jonicaton rtaas In UML, an exception
— i - is shown as a signal..
egm(tser Passwordﬂ login(User, Password)‘] This looks nearly
= B identical to a dashed
I /ﬂ line return

one or more of the callers handle the exception

BUt the COde iS ve ry d |ffe rent creates and returns description of exception in

result
A

If (loginAttempts > MAX_ATTEMPTS) oresontat o . _
{throw ‘Coordinator Coordnator Controler
new TooManyLoginAttemptsException()} T

login(User, Password] |

login(User, Password)
result

if (loginAttempts > MAX_ATTEMPTS)

(results.failed(); ...}

result
<, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

..return results;

Copyright 2003, Wirfs-Brock Associates, Inc. Ca"ers,read results and handle
exception

\.’B Guidelines For Defining Exception

" . I
® Avoid lots of exception classes Classes

IOException
4 IOException
-ExceptionValue
IOException1 IOException2 IOException3 IOException4 IOException5 O R -Message
IOExceptioné IOException7

IOException8| [IOExceptopm9| IOException10

® Define new classes of exceptions when a
handler’s behavior is expected to vary

FilelOError EndOfFileException

Copyright 2003, Wirfs-Brock Associates, Inc.

39

i Guidelines For Defining Exceptions
(1)

®m Name an exception after what went wrong, not
who raised it

®m Recast lower-level exceptions to higher-level ones
whenever you raise your abstraction level—when
subsystem boundaries are crossed or when the
caller won’t know what to do based on the
problem you describe

- It is better for a compiler to report “insufficient
disk space to continue compilation” than “l/0O error
#xxx.” If a low-level exception percolates up to
objects who don’t know to interpret it, it will be
hard for them to construct meaningful error
messages leading users to suspect a bug in the
compiler

Copyright 2003, Wirfs-Brock Associates, Inc.

40

i Guidelines For Handling Exceptions

® Provide context for the handler in the exception

- Specific information can be passed along such as
values of parameters that caused the exception,
detailed descriptions, error text, and information

useful in taking corrective action

object creates initial exception

Application Userlogin | \
Coordinator Controller

1T
login(user,password
login(user,password)
<<exception>>

TooMany
LoginAttempts
Exception

<Create>>

<<create>>_ UserAccess

Exception.
<<exception>>
L

original description is preserved in “inner exception”

Some designers,
when recasting
exceptions,
embed lower
level exceptions,
providing a
complete trace

Copyright 2003, Wirfs-Brock Associates, Inc.

41

YB Use Built-In Nested Exception Support

® In C# a read only InnerException property
holds the nested exception. Optionally, you
can set it in the constructor.

public class MyException:ApplicationException {
public MyException (String message) :base (message) { }

public MyException (String message,Exception inner) :base (message, inner) {}

}

public class ExceptExample {
public void ThrowInner () {
throw new MyException (“ExceptExample inner exception”);}

public void CatchInner () {
try {this.ThrowInner();}
catch (Exception e) {
throw new MyException (“Error caused by trying ThrowInner.”,e);}

}

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frirfsystemexceptionclassinnerexceptiontopic.asp

Copyright 2003, Wirfs-Brock Associates, Inc.

42

YB Use Built-In Nested Exception Support

® In Java, Throwable is the superclass of Error and (1)
Exception classes. It contains the execution stack
of its thread, and a message string. It can contain
another throwable, a cause (new in release 1.4)

A cause can be associated with a throwable either:
1. via a constructor that takes the cause as an argument
try{lowLevelOp();}
catch (LowLevelException le) {
throw new HigherLevelException(le); // Chaining-aware constructor

}

2. via the initCause (Throwable) method. This allows a cause to be associated
with “legacy” code which predates the exception nesting mechanism:

try {lowLevelOp();}
catch (LowLevelException le) {// Legacy constructor
throw (HighLevelException) new HighLevelException () .initCause(le);

}

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Throwable.html
Copyright 2003, Wirfs-Brock Associates, Inc.

43

_’B Handle Exceptions As Close To The
Problem As You Can

® Who might naturally handle exceptions?

1 As a first line of defense, consider the initial caller.
If it knows enough to take corrective action, the
exception can be taken care of right away

-l If an object attempts to open a data connection
and the open fails, it should take action

® Unhandled exceptions propagate to the nearest
matching catch block in the call chain. But don'’t
let exceptions “fly” anywhere

- Instead, give objects that are “control centers”
responsibility for fielding problems and taking
corrective action

-1 In Speak for Me! the Mailer handles problems
with delivery... and the user doesn’t even know
about behind-the-scenes recovery

Copyright 2003, Wirfs-Brock Associates, Inc.

44

! Don’t Use Checked Exceptions

Java distinguishes between checked and unchecked

exceptions. Placing a checked exception in a throws
clause forces you to be explicit

-J When thrown, a checked exception (or a

superclass) must be declared in the method
signature

- Clients must deal with the exception, either by
-1 catching it, or
-1 declaring it in their own throws clause (passing
along the problem to someone else)
Instead, use unchecked exceptions

- They need not be declared in your method
signature nor immediately dealt with by the caller

-1 Makes it easier to spot the real handler

-1 Avoids defensive exception swallowing code—
e.g. code with empty catch blocks or simple
logging

Copyright 2003, Wirfs-Brock Associates, Inc.

45

i

The downside
to checked
exceptions:
Increased
code bulk,
programming
pain, and
signature
rigidity

Don’t Use Checked Exceptions

Unchecke

Exception

RuntimeException YourClass

YourCIas/\\
?

?

Throwable

Error

[

VirtualMachineError,

IOException

Checked

IndexOutOfBoundsException

A

ArraylndexOutoOfBoundsException StringindexOutOfBoundsException

Copyright 2003, Wirfs-Brock Associates, Inc.

46

_’B Programming Language And Library
Impacts

® The programming language and libraries you use
influence the way you view program exceptions

® Exceptions can represent a structure for control
flow, a structure for handling abnormal or
unpredictable situations, or something in between

- Exceptions in Java, Ada, C++, C#, were designed to
mainly be used as control structures

- Eiffel’s exceptions are desighed to represent
abnormal, unpredictable erroneous situations

Copyright 2003, Wirfs-Brock Associates, Inc.

47

! Eiffel’s View of Exceptions

® A routine (method) must either succeed or fail:
either it fulfills its contract or it doesn’t. If it
doesn’t fulfill its contract, an exception is always
raised

-1 Exceptions are not part of the sighature

-1 Assertion violations and programming errors cause
exceptions to be raised

- Assertion checking and contract specification is an
integral part of the Eiffel programming language

® The difference in style and substance is real:

- Java: 1 unchecked exception thrown once every
~140 lines; checked more often; results in much
more exception handling code

-1 Eiffel: 1 every 4,600 lines, much less exception
handling code

Copyright 2003, Wirfs-Brock Associates, Inc.

48

Recovery Strategies

“The major difference between a
thing that might go wrong and a
thing that cannot possibly go wrong
Is that when a thing that cannot
possibly go wrong goes wrong it
usually turns out to be impossible to
get at or repair.” —Douglas Adams

© 2003, Wirfs-Brock Associates.

! Choices and Conseqgences

“The designer or his client has to choose to
what degree and where there shall be
failure. Thus the shape of all designed
things is the product of arbitrary choice. If
you vary the terms of your
compromise...then you vary the shape of
the thing designed. It is quite impossible for
any design to be ‘the logical outcome of the
requirements’ simply because the
requirements being in conflict, their logical
outcome is an impossibility.”

—David Pye, The Nature and Aesthetics of
Design

Copyright 2003, Wirfs-Brock Associates, Inc.

50

i . Recovery Strategies (I)

® Inaction—Ignore the request
® Balk—Admit failure

® Guarded suspension—Suspend execution
until conditions for correct execution are
established

® Provisional action—Pretend to perform the
request, but do not commit to it until
success Is guaranteed

®m Recovery—Perform an acceptable
alternative

Copyright 2003, Wirfs-Brock Associates, Inc.

51

i . Recovery Strategies (1l)

® Rollback—Try to proceed, but on failure,
undo the effects of a failed action

® Retry—Repeatedly attempt a failed action
after recovering from failed attempts

® Appeal to a higher authority—Ask someone
to apply judgment and steer the software to
an acceptable resolution

® Resigh—Minimize damage, write log
information, then signal definite and safe
failure. Definite means no need to try hard
to repair; safe means damage reducing
efforts have been taken

Copyright 2003, Wirfs-Brock Associates, Inc.

52

i . Workable Solutions Aren’t Always
Simple
m Mixing or combining recovery strategies
often leads to more satisfactory results
® This increases desigh complexity

® Solutions don’t always feel reasonable—
even if they are the best solution given the
circumstances

Copyright 2003, Wirfs-Brock Associates, Inc.

53

i Determining Who Should Take Action

® Objects do not work in isolation—they
collaborate to fulfill larger responsibilities—
a key question is which objects should take
on added responsibilities for guaranteeing
success in spite of individuals’ failures?

-1 You can place burden for success on the
requestor, shifting some onto the object
providing the service, split extra
responsibilities between them, or designate
others get involved

-l ...each choice has consequences

Copyright 2003, Wirfs-Brock Associates, Inc.

54

Y! Considerations When Asking The Client
To Check Before Making a Request

m Can clients easily check that success will be
guaranteed?

-1 If not, you may have to expand the service
provider’s interface

® What guarantees are there that after an
object has been checked for readiness, it
stays that way?

® Is the cost of checking prohibitive?

® Does checking produce undesirable side-
effects?

Copyright 2003, Wirfs-Brock Associates, Inc.

55

Y! Considerations When Giving The Client
Some Responsibility For Recovery

= How much responsibility should it take?

® Is it reasonable for each client to employ
individual recovery strategies, or should you
desigh some common recovery facilities for
clients to use?

® Or, should some object better equipped to
handle the situation be told of the failure?

Copyright 2003, Wirfs-Brock Associates, Inc.

56

i

Controllers Often Handle Problems

Delivery
exception

:SendCommand :Mailer :SMTPLibrary :Postmaster
process(Message)i - 1
deliver(Message)
send(from,to,msQ)
<<exception>>
<<exception>>
scheduleDeliveryOf(Message)
< Command o
i handles

Copyright 2003, Wirfs-Brock Associates, Inc.

57

_’B Considerations When Giving The Service
Provider Recovery Responsibility

® |Is this over engineering?

® How easy is it for the service provider to
detect that it has failed?

® Is it acceptable to introduce pauses or
delays for the service provider to fix up
things and carry on?

@ What is the probability of the service
provider getting what it needs to be able to
continue?

Copyright 2003, Wirfs-Brock Associates, Inc.

58

Making Collaborations More
Reliable

i A Strategy For Handling Exceptions
For A Key Collaboration

® Brainstorm exception and error cases that
should be addressed

® Decide on reasonable handling and
recovery strategies

® Design your software to detect and react
accordingly

-1 Create exception classes

- Assign exception handling responsibilities
to objects

1 Explore alternatives. Test for usability and
feasibility. Fail fast and iterate

Copyright 2003, Wirfs-Brock Associates, Inc.

60

i .

List What Might Go Wrong

® Enumerate all the exceptional conditions you can
think of for a specific chunk of collaborative
behavior. Consider:

-

L LLL L L

L

-

Users entering misinformation or failing to respond
Invalid information

Unauthorized requests

Untimely requests

Dropped communications

Failures due to broken or jammed equipment

Errors in data, corrupt log files, bad or inconsistent
data, missing files

Failure to accomplish some action within a
prescribed time limit

Critical performance errors

Copyright 2003, Wirfs-Brock Associates, Inc.

61

\-’B Next...

® Pick off a single exception that everyone
agrees is a relatively common occurrence

® Determine which object should detect the
exception and how it should be resolved

® Describe additional responsibilities of
collaborators

- Expect to introduce new objects along with
any complex recovery strategies—don’t
burden objects with too many exception
handling responsibilities

-1 Develop and document exception-handling
policies as you go

Copyright 2003, Wirfs-Brock Associates, Inc.

62

i

lllustrate The Non-Exceptional Case

Ul

:Session

:MakePayment
Transaction

makePayment()

1

result

> performTransaction(L

T

Copyright 2003, Wirfs-Brock Associates, Inc.

connect()

|
prepareRequest()
|

submitRequest()

Legacy Server

submitRequest()

T

result

>

disconnect()

|
logResult()

Use the non-
exceptional case
to guide your
consideration of
exceptional
cases.

63

_’B Describing Your Exception-Handling
Design

® Add to existing collaboration stories without
piling on too many details

-1 Leave an unexceptional diagram alone

-1 Draw a new diagram that illustrates how a
key exception is handled...but don’t draw
many similar diagrams

-l Instead, write a simple document that
explains exceptions considered, their
resolution, and what is considered out of

scope

Copyright 2003, Wirfs-Brock Associates, Inc.
64

i .

Exception or Error

Recovery Action

Affect on User

Connection is
dropped between Ul
and Domain Server
after transaction
request is issued.

Transaction
continues to
completion. Instead
of notifying user of
status, transaction is
just logged. User will
be notified of recent
(unviewed)
transaction results
on next login.

User session is
terminated... user
could've caused this
by closing his or her
browser, or the
system could have
failed. User will be
hotified of
transaction status
the next time they
access the system.

Connection dropped
between domain
server and backend
bank access layer
after request is
issued.

Attempt to re-

establish connection.

If this fails,
transaction results
are logged as
“pending” and the
user is informed that
the system is
momentarily
unhavailable.

User will be logged
off with a notice that
system is
temporarily
unavailable and will
learn of transaction
status on next login.

Copyright 2003, Wirfs-Brock Associates, Inc.

Explain And Document Specific Policies

Use
descriptions
approachable
to users,
developers
and other
stakeholders

65

i . Develop General Policies

® Describe your solution and explain general policies

- The online banking application is desighed to cover
communications failures encountered during a
financial transaction. A full set of single-point
failures was considered. Some double-point
failures were explicitly not considered

- The general strategy is to ensure that transaction
status is accurately reflected to the user. Failures
in validating information will cause the transaction
to fail, whereas intermittent communications to
the external database or to the backend banking
system during the transaction will not cause a
transaction to fail

Copyright 2003, Wirfs-Brock Associates, Inc.

66

Y! The Limits of What Can Be Explained In
A Diagram

® When you show an exception being raised,
you won’t necessarily know which object
handles it unless you explicitly add that detalil

:SendCommand :Mailer :SMTPLibrary :Postmaster
process(Message')L = il
deliver(Message) Thread
send(from,to,msg) <<create>> _ re?
<<exception>> r =Xxeeption
<<create>>
; Delivery
<< >>
exception Exception
ThreadException|to
DeliveryExceptian
scheduleDeliveryOf(Message)
< Command o
T handles
Delivery
exception

YB Specify Contracts Between Collaborators

® Contracts, invented by Bertrand Meyer, spell
out obligations and benefits for both clients
and service providers

® A contract is a job description

-1 A lazy service provider would place high
demands on its clients and guarantee vary
little

- ...out a demanding client wants guarantees!

m Contracts are agreements for collaborators
to work together in specific ways

-1 They are contrary to defensive collaborations
where nothing is trusted and everything is
checked

Copyright 2003, Wirfs-Brock Associates, Inc.

68

!

Example: A Contract For A Request That

Spans A Trust Boundary
Request: Obligations Benefits
Funds Transfer
Client: Online banking | (precondition) Funds are

app

User has two
accounts

transferred; balances
adjusted

Service provider:
backend banking
system

(preconditions)
Sufficient funds in the
first account

Honor requests only if
both accounts active

(postcondition)

Both balances are
adjusted

Only needs to check
for sufficient funds
and active accounts,
need not check that
user is authorized to
access accounts

Copyright 2003, Wirfs-Brock Associates, Inc.

69

YB Who’s Responsible For Guaranteeing
Obligations?

® Decisions on who should take responsibility

is partly style and partly a matter of trust
between objects:

- In untrusted collaborations, a client might
take special preparations before making a
request and make extra checks afterwards
to verify the service was performed
correctly

-1 When handling requests from unknown
sources, a service provider may take
nothing may be taken for granted—
everything is checked beforehand

Copyright 2003, Wirfs-Brock Associates, Inc.

70

\-’B When To Use Contracts

® Use them as a point of discussion when you are
assigning responsibilities among collaborators

® But writing meaningful contracts is a lot of work, if
you have no language support! Use them when you
want to be formal and precise

m Contracts are especially useful for defining
collaborations between your software and external
systems

- The hardest part is ensuring that guarantees are
met, especially when a service provider
collaborates with many others to get its job done

Copyright 2003, Wirfs-Brock Associates, Inc.

71

\-’B Frame Your Collaborations

“When you turn on a light, you probably
think of your movement of the control
button and the illumination of the light as a
single event. In fact, of course, something
more complex is going on.”

— Michael Jackson

m Software systems can be thought of a set of
related and interconnected sub-problems—
and as a consequence may be comprised of
several different “problem frames”. Each
different class of problem has different
concerns and design issues

Copyright 2003, Wirfs-Brock Associates, Inc.

72

\-’B 5 Problem Frames

m Control Problems - controlling state changes of
external devices or machinery

®m Connection Problems - receiving or transmitting
information indirectly through a connection

® Information Display Problems - presenting
information in response to queries about things and
events known by your software

®m Workpiece Problems - a tool that allows users to
create and manipulate computer-processable objects
or “workpieces”. Just like a lathe is a tool for
woodworking, software is a tool that helps users
create documents, compile programs, compose
music, perform calculations, manipulate visual
iImages, generate reports...

® Transformation Problems - converting some input to
onhe or more output formats

Copyright 2003, Wirfs-Brock Associates, Inc.

73

YB Problem Frames And Collaboration
Design

® Each different class of problem has
different concerns and design issues.

v Control frames—Do you need to determine
whether attempts at changing external
conditions had the desired effect? If so, you
will design ways to probe whether things
are as you expect. And if they aren’t, well...
is the problem your software or an external
device, and how should you recover?

v' Connection problems—Connections break
down, information gets lost or gets garbled.
You may need to re-establish connections
or try alternate paths, or...

Copyright 2003, Wirfs-Brock Associates, Inc.

74

i Problem Frames and Design Focus

v Information Display Problems—Does your
designh have to accommodate imprecise
questions or partial answers?

® Workpiece Problems—What's the real

nature of the workpiece and how usable is
your tool?

® Transformation Problems—What constitutes
an acceptable loss of information or the
reversibility of a transformation can be an

Issue. What constraints are there on speed
or memory utilization?

Copyright 2003, Wirfs-Brock Associates, Inc.

75

_’B When Problem Frames Affect
Collaboration Design

® The ideal: Jackson advocates fully
understanding the nature of the problems
your software is trying to solve before you
start design

® The agile reality: In a world full of imperfect
knowledge and time constraints, be
prepared. Characterize what problem
frames your design must tackle... but
expect more problems to crop up during
design. When they do, use problem frames
to focus your design strategies

Copyright 2003, Wirfs-Brock Associates, Inc.

76

s How a Connection Problem Affects

Your Design

“In many problems you’ll find that you can’t
connect the [software] machine to the relevant
parts of the real world in quite the way you would
like. You would prefer a direct connection...instead
you have to put up with an indirect connection that
introduces various kinds of delays and distortion.”
-Michael Jackson

m Basic strategies for dealing with connection
Issues:

1 Consider that your software is really interacting
with “something in the middle” that is connected
to “something out there” that doesn’t always work.

- Design your software to react in the face of
potential time-delays, conflicting states between
“connected” system as well as faulty connections

Copyright 2003, Wirfs-Brock Associates, Inc.

77

i . Review Your Collaboration Design

® Look for places where complexity may
sheak in

-1 embellished recovery actions—is it really
necessary to retry a failed operation, log it,
and send email?

-1 unnecessary checks—if you aren’t sure
whether some condition should be
checked, why not check anyway?

- redundant validation responsibilities—when
you are uncertain what objects should take
responsibility, why not do it several places?

Copyright 2003, Wirfs-Brock Associates, Inc.

78

i . Review Your Collaboration Design

® The most common bugs

-1 failing to address additional exceptions that
arise in exception handling code

-1 propagating exceptions to unprepared
software

- thinking an exception has been handled
when it has merely been logged

-1 range errors when mapping error codes to
exceptions

— Charles Howell and Gary Veccellio,
Advances in Exception Handling Techniques

Copyright 2003, Wirfs-Brock Associates, Inc.

79

! The Exception Registry Pattern™ (i)

® Legacy exception conditions are often
returned as coded values that have evolved
in an ad-hoc fashion. The encoding of
exception values may be arbitrary, with
little or no planning

®m To avoid having clients using legacy
services deal with this complexity, desigh a
set of exception classes and translate the
exception codes into systematically thrown

exceptions

*Pattern Author: Nik Boyd
http://home.labridge.com/~nikboyd/papers/patterns/except/index.htmil

Copyright 2003, Wirfs-Brock Associates, Inc.

80

i . Exception Registry Pattern Classes

provides legacy services
to clients

Client

_________ LegacyWrapper| wraps LegacySystem

maps legacy exception :’
codes to SpecificException |
instances i

\JExceptionReigstry RegisteredException

use when multiple
exceptions returned in
single legacy call

AggregateException| |SpecificException

Copyright 2003, Wirfs-Brock Associates, Inc.

81

\-’B In Conclusion

® Designing reliable collaborations demands
conscious action, awareness, and reflection

m Complexity naturally increases when software
takes extraordinary measures to recover from
exceptions and errors

®m So...design wisely

- Understand how reliable your software must be
before taking extraordinary measures

1 Expect application-level exceptions to be found in
use cases, and many more programming and
design exceptions later

- Look for simple solutions; just don’t expect them
Develop consistent patterns and policies as you go

1 Use problem frames and trust regions to reason
about your design, and contracts when you need to
be formal

Copyright 2003, Wirfs-Brock Associates, Inc.

L

82

Ob ect Des g

.’

Roles, Responsibilities, and Collaborations

Rebecca Wirfs-Broek and Alan MeKean

Forewords by lvar Jacobson and John Vlissides

Copyright 2003, Wirfs-Brock Associates, Inc.

Resources

® Read more about

exceptions, reliable
collaborations, wicked
problems, and object
design strategies in our
new book

Object Design: Roles,
Responsibilities and
Collaborations,
Rebecca Wirfs-Brock
and Alan McHKean,
Addison-Wesley, 2003

www.wirfs-brock.com
for articles & resources

83

