
Exploring	the	Generative	Nature	of	Patterns 	
LISE	HVATUM	
REBECCA	WIRFS-BROCK,	Wirfs-Brock	Associates	

This	is	an	about	paper—one	that	we	write	to	gain	a	better	understanding,	for	ourselves	and	our	readers	alike,	of	the	usefulness	of	a	pattern	
language	and	what	it	takes	for	experience	captured	in	pattern	form	to	be	of	use	to	others.	In	it	we	look	at	what	it	means	for	individual	patterns	
and	collections	 to	be	generative	and	explore	some	differences	between	 those	 that	are	highly	generative	and	 those	 that	are	not.	We	ask	
whether	software	design	and	software	process	patterns	can	be	generative	and,	if	so,	what	is	their	potential	impact.	Finally,	we	draw	some	
conclusions	on	how	these	thoughts	on	pattern	generativity	could	influence	future	writing	of	and	support	for	generative	patterns.		

Categories	 and	 Subject	 Descriptors:	 •Software	 and	 its	 engineering~Software	 creation	 and	 management~Collaboration	 in	 software	
development~Programming	 teams	 •Software	and	 its	 engineering~Software	 creation	and	managementt~Software	development	process	
management	

General	Terms:	Patterns,	Pattern	Languages,	Pattern	Generativity	

Additional	Key	Words	and	Phrases:	Design	Patterns,	Organizational	Patterns,	Change	Patterns,	Christopher	Alexander,	Quality	

ACM	Reference	Format:		
Hvatum,	L.	and	Wirfs-Brock,	R.	2023.	Exploring	the	Generative	Nature	of	Patterns.	30th	Conference	on	Pattern	Languages	of	Programming	
(PLoP),	PLoP	2023,	Oct	22-25,	2023,	17	pages.	

1. INTRODUCTION	

Starting	with	EuroPLoP	2015,	we	published	a	number	of	papers	on	patterns	for	managing	a	software	product	
backlog	 [HW2015,	WH2016,	 HW2017,	 HW2018,	WH2018,	WH2019].	 For	 a	 summary	 of	 our	Magic	 Backlog	
patterns	see	Appendix	A.	A	lot	of	work	went	into	capturing,	validating,	reviewing,	refining,	and	publishing	the	
final	papers—not	only	by	us	authors	but	by	shepherds,	workshop	participants,	and	others	supporting	our	efforts.	
At	 this	 time,	 we	 believe	 the	 collection	 to	 be	 mostly	 complete	 in	 that	 these	 patterns	 capture	 our	 detailed	
knowledge	of	creating	and	maintaining	a	healthy	product	backlog	for	software	product	development.		

Having	gotten	this	far,	we	should	now	be	able	to	rest	our	case	and	enjoy	a	feeling	of	accomplishment.	So	why	
don’t	 we?	 Because	we	 struggle	with	 key	 questions	 that	 remain	 unanswered.	 On	 the	 practical	 level,	 we	 ask	
ourselves	if	a	team	could	take	our	work	and	use	it	to	guide	their	efforts	at	creating	their	own	backlog?	Would	our	
patterns	 help	 them	 be	more	 effective?	 Or	would	 they	 repeat	 the	 trials	 and	 errors	we	went	 through	 before	
attaining	a	good	solution	for	their	team?	But	even	more,	we	wonder	if	the	true	goal	of	our	patterns	is	the	backlog	
itself	or	rather	to	improve	the	inner	workings	of	the	development	team—that	using	these	patterns	leads	them	
to	a	backlog	that	positively	influences	and	enhances	the	way	their	team	works.	

There	 are	 several	 reasons	 why	 people	 write	 pattern	 papers	 and	 attend	 PLoP	 (Pattern	 Languages	 of	
Programs)	conferences.	It	can	be	for	academic	achievements,	to	get	feedback	from	a	wider	audience	on	company	
practices,	or	even	because	it	is	more	rewarding	to	participate	in	a	PLoP	conference	with	a	paper	than	without	
one.	

But	if	your	driving	force	behind	writing	patterns	papers	is	to	educate	and	help	people	work	better,	to	enable	
others	to	create—whether	it	be	microservice	architectures,	team	practices,	or	sustainable	communities—then	
you	are	probably	among	those	who	grapple	with	questions	of	how	to	best	write	patterns	and	patterns	languages	
to	make	their	contents	accessible	and	impactful.	

This	leads	us	to	seek	a	more	thorough	understanding	of	the	qualities	of	patterns	and	to	explore	the	potential	
they	have	to	affect	positive	changes.	In	the	early	days	of	the	patterns	community	there	were	deep	discussions	
about	these	topics.	We	have	researched	the	writings	of	Christopher	Alexander	as	well	as	some	founders	of	the	
software	patterns	movement.	One	fundamental	characteristic	of	a	pattern	or	a	pattern	language	that	they	all	
agreed	on	as	important	is	its	generative	qualities.	We	are	especially	interested	in	deepening	our	understanding	
of	generativity	and	its	implications	on	both	pattern	writing	and	pattern	use.	

Permission	to	make	digital	or	hard	copies	of	all	or	part	of	this	work	for	personal	or	classroom	use	is	granted	without	fee	provided	that	copies	
are	not	made	or	distributed	for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	and	the	full	citation	on	the	first	page.	To	copy	
otherwise,	to	republish,	to	post	on	servers	or	to	redistribute	to	lists,	requires	prior	specific	permission.	A	preliminary	version	of	this	paper	
was	presented	in	a	writers'	workshop	at	the	30th	Conference	on	Pattern	Languages	of	Programs	(PLoP).	PLoP'23,	October	22-25,	Allerton	
Park,	Monticello,	Illinois,	USA.	Copyright	2023	is	held	by	the	author(s).	HILLSIDE	978-1-941652-19-0		

Exploring	the	Generative	Nature	of	Patterns:	Page	-	2	

2. WHY	WE	WRITE	PATTERNS	

Alva	Noë,	 in	The	Entanglement:	How	Art	and	Philosophy	Make	Us	What	We	Are	[Noë],	observes	that,	 “Human	
beings	are	organized,	in	the	large,	and	in	the	small,	by	habit,	custom,	technology,	and	biology.	This	organization	
is	what	lets	us	have	a	world	and	cope	with	it	…	But	it	also	constrains	us;	it	holds	us	captive,	defines	our	ordinary,	
and	confines	our	intuitions.”	So	how	can	we	break	out	of	our	ruts?		

Noë	 claims	 that	 art	 and	 philosophy,	 “are	 the	ways	 that	we	 re-organize	 ourselves.	…	 Art	 and	 philosophy	
require	of	us	that	we	work	ourselves	over	and	make	ourselves	anew,	individually	and	ensemble.”	Patterns	aren’t	
literary	art	or	philosophy,	but	they	share	some	important	properties	with	them.	Most	important,	patterns	name	
and	explain	actions	that	previously	we	may	have	only	dimly	intuited.	Patterns	also	articulate	the	essence	of	when	
it	is	appropriate	to	take	certain	actions	and	the	potential	effects	of	doing	so.	

We	don’t	write	patterns	for	pattern	writing’s	sake,	but	to	better	understand	a	part	of	our	world	and	the	effects	
certain	actions	have	on	it.	We	want	to	convey	that	understanding	to	others.	We	want	readers	to	be	able	apply	
our	patterns,	to	reshape	and	creatively	renew	themselves	and	while	doing	so	positively	impact	their	world.	In	
this	regard.	we	are	particularly	inspired	by	the	words	of	Devin	Arrigo	(Figure	1):	

	

Humans are hard-wired to create.

There’s something so satisfying about creating with your own two hands.

A treehouse. A poem. A song. A meal.

Human beings have an innate desire to build. To create. To make.

It feels so good to create something from nothing. To make something.
To produce. To imagine. To invent.

Whether it’s a song, a story, a house, a painting, a bird box, or a picture
— human beings are hard-wired to create. It’s in our DNA.

Don’t fight it: embrace it, accept it, and relish in it.

And then use it as fuel to create. To make your thing.

The feeling of satisfaction after stepping back and looking at your thing is
gratifying. Building something that will last is purifying. And inspiring
others to build their thing is unifying.

Go build your thing. And in the process, inspire others to do the same.

Figure	1.	Humans	are	hard-wired	to	create	online	work	by	Devin	Arrigo	[Arri]	

	
	

	
	
	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	3	

3. WHAT	ARE	GOOD	PATTERNS?	

There	isn’t	a	definition	of	pattern	quality	that	is	widely	accepted	in	the	pattern’s	community.	That	is	not	to	say	
that	we	do	not	have	agreed	guidelines	for	pattern	writing—like	choosing	a	short	name	reflective	of	the	outcome	
that	can	be	used	in	natural	language	sentences	or	providing	three	examples	of	usage	to	validate	the	solution.	We	
also	have	well-known	templates	and	styles	for	pattern	descriptions.	But	none	of	these	define	or	drive	the	quality	
of	a	pattern	or	a	pattern	language.	

In	his	book	Software	Requirements	[Wie],	Karl	Wiegers	defines	desirable	characteristics	of	both	individual	
requirements	and	requirements	collections	(Table	1).		

	
Table	1.	Characteristics	of	Individual	Requirements	and	Collections	of	Requirements	

While	Wiegers’	characterizations	don’t	exactly	resonate	with	patterns’	qualities,	they	do	inspire	us	to	seek	out	
desirable	 qualities	 of	 patterns	 and	 pattern	 languages.	What	makes	 a	 pattern	 good	 is	 subjective.	 But	 in	 our	
estimation,	a	pattern’s	goodness	is	more	about	that	pattern’s	effect	than	how	it	was	written.	

Good	 patterns	 enable	 you	 to	 create	 something	 that	 is	 not	 obvious.	 Good	 patterns	 also	 enhance	
communication	by	 introducing	 conceptual	 solutions	 that	have	 some	degree	of	 complexity	 that	 can	 easily	be	
referred	to	by	name	using	natural	language—they	are	unambiguous	but	not	simplistic.	

A	pattern	language	as	originally	defined	by	Christopher	Alexander	et	al	in	A	Pattern	Language	[Alex],	is	an	
organized,	coherent	set	of	patterns,	each	of	which	describes	a	problem	and	the	core	of	a	solution	that	can	be	used	
in	many	ways	within	a	specific	field	of	expertise.	In	that	sense,	according	to	Alexander,	pattern	languages	are	
“complete	enough”	and	self-consistent.	

Good	patterns	offer	a	high	degree	of	freedom	in	their	application	while	maintaining	their	value/intention.	
While	patterns	are	not	precise	recipes,	they	aren’t	complete	or	accurate	in	the	sense	that	Wiegers	talks	about.	
Instead,	they	are	constrained.	

A	pattern	language	is	more	than	a	mere	assemblage	of	individually	useful	tools;	instead,	a	pattern	language	
attempts	 to	 express	 the	 deeper	wisdom	 of	 how	 to	 bring	 aliveness	 to	 a	 particular	 field	 of	 human	 endeavor,	
through	applying	interconnected	patterns	to	create	something	of	quality.	According	to	Alexander,	“Every	society	
which	is	alive	and	whole	will	have	its	own	unique	and	distinct	pattern	language.	Every	individual	in	such	a	society	
will	have	a	unique	language,	shared	in	part,	but	which	as	a	totality	is	unique	to	the	mind	of	the	person	who	has	
it.	In	this	sense,	in	a	healthy	society	there	will	be	as	many	pattern	languages	as	there	are	people—even	though	
these	languages	are	shared	and	similar.”[Alex]		

To	us,	the	really	good	patterns	are	those	that	become	our	“constant	companions,”	that	is	the	patterns	that	we	
actively	apply	 in	our	daily	work	and	that	 inform	and	influence	our	actions	again	and	again.	More	than	being	
memorable,	these	patterns	keep	giving	us	fresh	insights	and	additional	knowledge.	Each	use	of	them	provides	
new	results	that	evolve	and	deepen	our	understanding.	In	a	way,	these	patterns	grow	on	us	and	with	us	year	
after	year.	

We	use	patterns	to	create—software	architectures,	product	solutions,	and	our	organizations.	The	quality	that	
we	value	the	most	in	patterns	is	the	ability	to	create	new	things	of	high	value—defined	as	pattern	generativity.	
While	we	appreciate	pattern	descriptions	that	use	eloquent	language,	have	clear	explanations,	good	structure,	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	4	

and	nice	illustrations,	we	can	live	with	“good	enough”	in	all	of	these	aspects	if	the	pattern	or	pattern	language	
serves	as	a	catalyst	for	making	consequential	creations.	

4. GENERATIVITY	AND	PATTERNS	

For	those	of	us	who	have	been	around	for	a	while	(or	longer)	we	feel	a	profound	responsibility	to	ensure	the	
patterns	 that	 we	 provide	 are	 good.	 Generativity	 has	 been	 bandied	 about	 in	 the	 pattern’s	 community	 as	 a	
desirable	property	of	patterns	or	pattern	languages.	 Is	generativity	what	makes	patterns	good?	What	does	it	
mean	for	a	pattern	or	pattern	language	to	be	generative?	

Generativity,	as	defined	in	the	Cambridge	English	Dictionary,	simply	means,	“the	quality	or	ability	to	produce	
something	new.”		

Applying	a	pattern	always	creates	something	new.	Does	this	imply	that	all	patterns	are	inherently	generative?	
We	don’t	think	so.	We	believe	that	pattern	generativity	means	something	more.	

In	The	Nature	of	Order,	The	Process	of	Creating	Life	[Alex2002],	Christopher	Alexander	reflects	how	patterns	
ideally	should	be	discovered	and	applied:	“Much	of	our	early	work	implicitly	made	use	of	the	idea	that	good	
patterns	were	to	be	derived,	somehow,	from	existing	culture,	thus	ensuring	a	relation	to	the	subtleties	of	culture	
variation,	and	preserving	things	that	were	good	and	important...	Was	there,	indeed,	any	way	in	which	one	might,	
by	observation	of	culture	as	it	is,	decide	in	what	direction	it	ought	to	go,	in	the	future?”	

In	Alexander’s	estimation,	the	goal	of	good	patterns	isn’t	only	to	create	some	new	thing,	but	rather	to	create	
a	better	world	that	respects	the	existing	culture	while	improving	the	quality	of	life.		

The	Peruvian	Experiment,	carried	out	in	1969	by	Alexander	and	three	colleagues	attempted	to	do	just	that.	
In	an	intense,	reflective	process,	 they	observed	Peruvian	life	and	culture	while	designing	low-cost	homes	for	
Peruvian	families.	They	identified	and	documented	the	centers	(e.g.,	 the	patterns)	they	used.	The	criteria	 for	
selecting	a	pattern	to	be	part	of	their	Peruvian	pattern	language	was	its	relative	“strength”	and	its	perceived	
effects	on	the	culture	and	lives	of	the	inhabitants.	According	to	Alexander,	they	“[got]	so	deeply	into	the	situation	
that	we	could	feel,	in	our	bodies,	just	which	ones	[centers/patterns]	needed	to	be	there.”		

It	is	telling	that	Alexander,	and	his	colleagues,	didn’t	solely	rely	on	their	gut	feelings	to	judge	the	quality	of	
their	designs.	As	they	wanted	to	respect	Peruvian	culture	(and	not	impose	their	own	aesthetics),	they	sought	
feedback	from	potential	residents	on	their	emerging	designs.	The	architects	found	this	design	process	intensely	
gratifying.	Alexander	remarked	that,	“culture-borne	centers	play	a	genetic	role,	not	unlike	the	role	played	by	
genes	in	an	organism.	They	describe	what	is—in	a	deep,	inner	sense.	And	they	also	describe	how	the	world	can	
be	generated,	to	become	congruent	with	people’s	inner	feelings,	aspirations,	habits,	and	society.”	

Generative	patterns	are	ambitious.	 It	 is	 insufficient	 to	simply	create	new	things	using	patterns	 if	we	care	
about	bringing	more	life	and	wholeness	to	the	world	(or	more	precisely	the	part	of	it	that	we	are	designing).	We	
should	identify	and	apply	impactful	patterns	that	respect	the	existing	culture	while	improving	the	quality	of	life	
of	those	who	use	what	we	make.		

But	how	do	Alexander’s	views	on	pattern	generativity	relate	to	the	patterns	that	software	folks	and	others	in	
our	community	write	about?	Alexander’s	goals	seem	rather	lofty	and	out	of	reach.	

We	 looked	 to	 early	 discussions	 from	members	 of	 the	 software	 patterns	 community	 for	 clues	 on	 aspects	
important	to	software	pattern	generativity.	

In	 his	 book,	 Patterns	 of	 Software:	 Tales	 from	 the	 Software	 Community	 [Gab],	 Richard	 Gabriel	 writes,	
“Generativity	is	an	interesting	trait.	Typically,	something	is	generative	when	it	produces	the	generated	quality	
indirectly.”	One	of	his	examples	is	taken	from	the	domain	of	tennis	about	how	to	best	hit	a	tennis	ball:	“...	you	
should	not	concentrate	on	hitting	the	ball	at	the	point	of	impact	but,	instead,	hitting	a	point	beyond	the	ball	in	
the	direction	the	racket	is	moving.	The	purpose	of	this	advice	is	to	avoid	the	effect	of	the	muscles	trying	to	slow	
down	or	stop	at	the	point	of	impact.	...	Such	advice	is	generative:	The	goal	is	to	hit	smoothly	and	with	full	power,	
but	the	goal	is	not	part	of	the	advice.	Rather,	the	advice	is	to	do	something	else	which	has	the	effect	of	achieving	
the	goal.”		

This	view	of	generativity	resonates	with	statements	in	a	Portland	Pattern	Repository	wiki	discussion	[CM],	
in	which	Jim	Coplien	claimed	that	generative	patterns	and	languages	lead	to	“emergent	behavior…	that	work	
indirectly;	 they	work	on	 the	underlying	structure	of	a	problem	(which	may	not	be	manifest	 in	 the	problem)	
rather	than	attacking	the	problem	directly.”		

It	should	be	noted	that	the	author	of	this	type	of	generative	pattern	will	need	to	have	the	intended	quality	
goal	 in	mind	when	writing	 the	pattern.	 This	 approach	 to	 generativity	 is	 very	much	present	 in	 the	works	 of	
Alexander.	Richard	Gabriel	points	 to	Alexander’s	pattern,	Alcoves,	 as	 a	 good	example.	By	 creating	alcoves	 in	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	5	

larger	rooms,	families	can	be	together	even	when	they	are	doing	different	things,	with	the	overarching	(indirect)	
goal	being	the	wellbeing	of	the	family.	

In	another	essay	written	at	that	same	time,	Jim	Coplien	observed	that,	“The	structures	of	a	pattern	are	not	
themselves	solutions,	but	they	generate	solutions.	Patterns	that	work	this	way	are	called	generative	patterns.	A	
generative	pattern	is	a	means	of	letting	the	problem	resolve	itself	over	time.”	[Cope]	

Gerard	Meszaros	remarked	that:	“[a	pattern]	is	more	interesting	if	it	covers	a	range	of	possible	solutions	and	
it	 leaves	 the	user	 in	 control	 of	 their	 own	destiny.”	He	 also	noted	 that,	 “Since	 the	user	of	 the	pattern	 is	 best	
equipped	to	understand	the	context	and	therefore	decide[sic]	what	forces	to	optimize	at	the	expense	of	others,	
the	user	is	left	in	a	position	to	determine	their	own	destiny.	This	interpretation	differs	from	the	Alexander’s	and	
Coplien’s	explanations	where	the	emergent	behavior	 is	an	 implicit	effect	of	 the	pattern.	Mezsaros’	statement	
welcomes	the	creativity	of	pattern	users	and	opens	the	solution	space	for	variability.	

In	Pattern	Hatching:	Design	Patterns	Applied	 [Vlis],	 John	Vlissides	provides	a	straightforward	definition	of	
pattern	 generativity	 while	 debunking	 the	 misconception	 that	 “patterns	 ‘generate’	 whole	 architectures.”	 He	
writes:	“The	generative	aspect	of	patterns	gets	discussed	periodically	in	the	pattern	forums.	As	I	understand	it,	
generativity	refers	to	a	pattern’s	ability	to	create	emergent	behavior.	That’s	a	fancy	way	of	saying	the	pattern	
helps	the	reader	solve	problems	that	the	pattern	doesn’t	address	explicitly.”	

Patterns	with	a	high	degree	of	generativity	work	at	a	fundamentally	different	level	(more	broadly	or	deeply)	
than	patterns	with	less	generativity.	Patterns	with	low	generativity	merely	provide	straightforward	solutions	to	
directly	address	specific	design	problems.	Patterns	with	more	generativity,	on	 the	other	hand,	while	 solving	
problems	also	have	the	potential	to	change	the	problem	landscape.	They	create	the	potential	for	resolving	even	
more	significant	problems.	They	have	both	a	short	term	and	longer-term	positive	impact.	

Less	generative	patterns	tend	to	be	practical	and	relatively	straightforward	to	apply.	They	do	not	require	too	
much	from	their	user	in	regard	to	prior	knowledge	or	domain	experience.		

But	people’s	needs	differ.	Some	want	to	get	to	a	“good	enough”	design	implemented	quickly	and	are	either	
unwilling	or	unable	to	spend	hours	researching	and	experimenting	to	find	better	designs—those	with	potentially	
greater	impact	and	longer	term	(and	often	unexpected)	benefits.	To	those	hurried	designers,	their	immediate	
goal	 is	 to	 find	reasonable,	 “proven”	solutions	that	 they	can	reuse	without	much	effort.	And	often	that’s	good	
enough.	One	risk	with	naively	using	patterns	that	aren’t	particularly	generative,	however,	is	that	they	can	lead	
to	mediocre	designs	that	miss	the	point.	

Using	 generative	 patterns	 skillfully	 requires	 expertise,	 experience,	 experimentation,	 and	 reflection.	 They	
don’t	offer	quick	fixes.	Generative	patterns	demand	more	of	the	designer.	

Jim	Coplien	asserted	that,	“...few	published	software	patterns	exhibit	generativity.”	[Cope]	Looking	back	over	
nearly	30	years	of	published	software	design	and	process	patterns	that	have	been	written	since	Coplien	made	
this	assessment,	we	find	this	still	to	be	the	case.	

Why	is	this?	
It	is	rare	for	any	single	pattern	on	its	own	to	be	especially	generative.	For	example,	the	patterns	in	Design	

Patterns:	Elements	of	Reusable	Software	[GHJV]	provide	small	ways	to	structure	object-oriented	implementations	
to	be	more	extensible	and	maintainable.	Each	pattern	is	a	small	building	block	that	solves	an	immediate	design	
problem.	Some	patterns	provide	hooks	that	allow	for	future	design	extension	(as	long	as	that	extension	fits	into	
the	patterned	structure	created	for	it).	Others	hide	unnecessary	details	or	reduce	dependencies	between	parts	
of	the	system.	Instead	of	contorting	code	to	use	some	other	code	that	doesn’t	fit	the	existing	design,	create	an	
Adapter	which	provides	a	cleaner	interface.	Have	that	Adapter	call	that	ugly	existing	code—hiding	details	that	
would	 compromise	 the	design.	Or,	hide	 some	existing	 complexity	by	 introducing	a	Façade	which	presents	 a	
narrower	interface.		

It	is	up	to	the	designer	to	pick	and	choose	among	these	patterns	as	they	see	fit.		
While	individually,	these	patterns	are	useful,	these	and	many	other	software	architecture	or	design	patterns	

are	like	stock	materials	that	can	be	used	to	solve	a	specific	design	problem	in	a	particular	way.	They	shape	small	
bits	of	software	structure.	While	these	are	all	good	patterns,	their	collective	use	doesn’t	automatically	add	up	to	
something	more	profound.	Applied	consistently	and	repeatedly,	and	with	skill,	they	can	lead	to	a	more	coherent,	
comprehensible	design	with	 regular	 (repeating)	 structures.	But	 it	 is	 a	 stretch	 to	 say	 that	 these	patterns	 are	
especially	generative.	They	have	no	ambitions	for	restructuring	the	nature	of	the	software	design	problem.		

So,	rather	than	considering	individual	patterns	as	being	particularly	generative,	we	think	it	is	more	fruitful	
to	consider	the	impacts	of	groups	of	related	patterns	or	pattern	collections,	and	how	it	is	that	they	work	together	
towards	creating	larger	structures	and	improving	the	quality	of	a	particular	aspect	of	the	world.	Can	specific	
groups	of	related	software	design	patterns	be	considered	generative?	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	6	

John	Vlissides’	remarks	about	what	makes	patterns	generative	resonate	with	our	experience:	“Some	of	what	
I’ve	 read	 suggests	 that	 true	 generativity	makes	 this	 happen	 almost	 in	 spite	 of	 one’s	 self.	 To	me,	 the	 key	 to	
generativity	is	in	the	parts	of	a	pattern	dedicated	to	teaching—the	forces	and	their	resolution,	for	example,	or	
the	discussion	of	consequences.	These	insights	are	particularly	useful	as	you	define	and	refine	an	architecture.	
But	patterns	don’t	generate	anything—people	do,	and	they	do	it	only	if	both	they	and	the	patterns	they	use	are	
up	to	snuff.	Moreover,	patterns	are	unlikely	to	cover	every	aspect	of	an	architecture.	Show	me	a	nontrivial	design	
and	I’ll	show	you	lots	of	design	issues	that	no	pattern	addresses.	Perhaps	they	are	not	common	or	recurring	
issues,	 or	 if	 they	 are,	 they	 have	 yet	 to	 be	written	 up	 in	 pattern	 form.	 In	 any	 event,	 it’s	 up	 to	 you	 to	 fill	 the	
whitespace	between	patterns	with	your	own	creativity.”	

The	patterns	in	Design	Patterns:	Elements	of	Reusable	Software	claim	to	provide	only	some	of	the	elements	
useful	in	creating	well-structured	object-oriented	software.	They	aren’t	particularly	generative.	But	by	skillfully	
and	carefully	employing	such	small	structures	(classes)	along	with	other	design	techniques	such	as	those	found	
in	Object	Design:	Roles,	Responsibilities,	 and	Collaborations	 [WM],	designers	 can	end	up	with	a	better	object-
oriented	 design.	 In	 the	 hands	 of	 skilled	 designers,	 those	 software	 design	 patterns	 can	 improve	 both	 the	
wholeness	of	the	system	and	the	lives	of	those	who	work	in	the	code.	But	that	requires	ongoing	design	attention	
and	curation,	and	a	larger	design	vision	than	what	patterns	provide.	

While	collections	of	software	design	and	architecture	patterns	may	not	be	stunningly	generative,	they	can	
have	positive	impacts.	And	yet,	they	seem	far	from	meeting	Alexander’s	lofty	goal	of	profoundly	changing	the	
world	for	the	better.	Should	we	creators	and	users	of	these	kinds	of	patterns	feel	good	about	our	use	of	patterns,	
even	as	we	fall	short	of	Alexander’s	aspirations?		

We	think	so.	
Patterns	are	“a	thing	and	a	process”	[Alex79].	As	a	thing,	we	want	a	pattern	to	have	the	quality	desired	(and	

admired)	by	its	users.	As	a	process,	we	want	a	pattern	not	only	to	enable	the	creation	of	this	thing	with	quality,	
but	 to	 enable	 the	 creator	 to	 feel	 pride	 and	 fulfillment	 during	 the	 process—a	 process	 that	 is	 intellectually	
stimulating,	giving	the	designer	freedom	to	experiment,	adapt,	and	learn.	Because	creativity	and	generativity	are	
closely	related,	we	think	that	patterns	and	pattern	languages	can	only	have	a	profound	impact	when	their	users	
pay	particular	attention	to	generativity.		

Our	Magic	Backlog	patterns	were	written	with	the	intent	of	improving	the	flow	of	and	accuracy	of	information	
among	people	working	 together	on	a	 long-lived	software	product	development	effort.	 Structuring	a	product	
backlog	indirectly	impacts	the	team	by	improving	communication	and	information	accuracy,	providing	better	
answers	about	the	current	status	and	quality	of	the	product	development	efforts.	When	we	initially	wrote	our	
patterns,	our	goal	was	to	provide	guidance	on	how	to	structure	and	maintain	a	backlog	enabling	it	to	be	a	useful	
tool.	We	didn’t	yet	fully	appreciate	how	these	patterns	could	also	positively	impact	the	team.	

As	the	team	and	the	product’s	needs	evolve,	the	way	the	backlog	is	organized	and	managed	needs	to	change	
accordingly.	 While	 individual	 backlog	 patterns	 don’t	 offer	 quick	 fixes	 for	 inaccurate	 information	 or	 poor	
communication,	successively	applied,	they	do	have	a	larger	impact	than	simply	the	backlog	itself.	They	enable	
people	to	work	together	on	a	large	engineering	effort	without	stepping	on	each	other’s	toes.		

Upon	reflection,	we	believe	that	our	collection	of	Magic	Backlog	patterns	is	generative.	And	yet,	to	actually	
improve	product	development,	these	patterns	require	those	who	use	them	to	pay	ongoing	attention	to	the	needs	
of	the	people	they	will	impact.	They	also	require	experimentation,	refitting,	and	adjustments	over	time	in	order	
to	continue	to	meet	the	team’s	needs.	Creating	a	well-structured	backlog	doesn’t	happen	at	once.	It	takes	time,	
and	it	takes	people	who	“are	up	to	snuff.”	

5. THE	IMPACT	OF	CULTURE	

Patterns	as	a	simplistic	set	of	instructions—do	this,	then	this,	then	this—are	of	limited	value,	especially	for	those	
patterns	which	deal	with	human	interactions.	The	problem	is	that	 in	the	hands	of	 less	reflective	users,	 these	
kinds	 of	 patterns	 often	 lead	 to	mechanical	 application	 rather	 than	 a	 team	 practice	 of	 experimentation	 and	
evolution	into	a	highly	collaborative	and	well-functioning	unit.	This	is	what	has	happened	to	too	many	teams	
trying	 to	 implement	 agile	 and	 lean	 processes.	 Agile	 processes	 are	 built	 on	 a	 very	 clear	 value	 system.	 Their	
founders	spent	a	lot	of	energy	to	make	the	underlying	values	and	principles	the	core	of	their	teaching.	But	many	
organizations	have	skipped	lightly	over	these	aspects,	instead	focusing	only	on	the	practices.	Subsequently,	they	
failed	in	their	agile	journey.	Those	who	succeeded	took	a	more	thoughtful	path—they	paid	ongoing	attention	to	
the	values	and	principles	that	are	integral	to	the	agile	culture.	

To	successfully	use	any	pattern	language,	we	can	draw	upon	a	lesson	from	the	agile	software	community:	be	
explicit	about	the	value	system	and	the	principles	that	form	the	foundation	for	the	practices	that	the	organization	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	7	

(and	the	team)	are	built	on.	The	same	principles	apply	to	patterns:	Make	sure	there	is	alignment	of	your	values	
with	the	value	system	underlying	the	pattern	language	you	are	using.		

Patterns	are	assumed	to	work	in	a	given	context.	But	what	context	is	close	enough	for	a	pattern	to	work?	Will	
solutions	that	work	in	one	organization	be	readily	applied	elsewhere?	Different	organizations	may	look	similar	
to	an	outsider—same	type	of	work,	same	technologies	and	tooling,	similar	team	size	and	roles	on	the	team.	But	
the	value	systems	in	the	organizations	may	be	fundamentally	different.	As	an	example,	consider	the	fascination	
with	 “The	Toyota	Way”	 in	 the	 early	 2000’s—creating	Obeya	 rooms	 (war	 rooms)	 and	 applying	other	Toyota	
practices	unsuccessfully	in	US	companies	with	cultures	so	different	from	the	Japanese	(it	can	be	argued	that	the	
Toyota	Way	caused	as	many	issues	as	it	solved	even	inside	Toyota)	[Wiki].	

Furthermore,	the	intricate	value	system	of	a	team	will	change	over	time.	It	changes	with	team	maturity,	and	
it	changes	every	time	team	members	 leave	or	 join.	This	means	that	the	context	 is	ever-changing.	Also,	 it	has	
facets	that	are	practical	and	observable,	but	also	facets	that	are	hidden	and	not	well	understood.	The	implications	
of	this	shifting	context	that	can	only	be	partially	perceived	is	that	patterns	that	seem	like	the	right	solution	on	
the	surface	can	be	less	than	optimal	or	plain	wrong.	And	vice	versa,	patterns	that	seem	to	be	out	of	scope	could	
actually	be	helpful.	

Although	values	are	embedded	in	patterns	and	pattern	languages,	they	aren’t	often	deliberately	called	out.	In	
hindsight,	we	realize	that	we	only	hinted	at	the	values	underlying	our	backlog	when	we	suggested	the	target	
audience	for	our	patterns—teams	building	complex	systems	that	need	to	be	supported	for	a	long	time.	Our	values	
were	not	clearly	spelled	out	as	we	began	our	pattern	writing	because	we	were	in	the	process	of	coalescing	them	
as	we	found	and	refined	our	patterns.	These	values	became	clarified	through	our	writing:	We	value	accurate	and	
timely	information,	a	retained	history	of	the	product	development	effort,	access	to	relevant	product	and	design	
documentation,	an	evident	structure	to	the	ongoing	product	development	effort,	support	for	quality	assurance	
and	testing,	and	clearly	defined	responsibilities	for	maintaining	the	backlog	that	can	evolve	with	the	team.		

We	 find	 that	 particularly	 generative	 patterns	 are	 more	 closely	 connected	 to	 the	 inner	 workings	 of	 the	
organizations	where	they	are	used.	As	such,	they	require	more	from	the	users	in	studying,	understanding,	and	
adapting	the	patterns	to	their	own	unique	situation.	Experience,	personal	heuristics,	and	culture	play	a	large	role	
in	the	application	of	generative	patterns	to	get	the	best	out	of	them.	If	your	values	significantly	differ,	then	our	
Magic	Backlog	patterns	may	not	be	for	you.	

6. MULTIPLE	PATTERN	LANGUAGES	

As	we’ve	taken	a	closer	look	at	our	Magic	Backlog	patterns	to	understand	their	generative	potential,	we	think	it	
is	also	 important	 to	recognize	better-known	people	and	process	related	patterns,	namely	 the	Organizational	
Patterns	and	Fearless	Change	Patterns.		

The	 original	 Organizational	 Patterns	 were	 bundled	 into	 a	 book	 titled	 Organizational	 Patterns	 of	 Agile	
Software	Development	to	appeal	to	agile	software	developers	[CH].	Later	they	were	reflected	in	A	Scrum	Book:	
The	Spirit	of	the	Game	[SC].	These	authors	identified	their	organizational	patterns	empirically	long	before	agile	
or	 Scrum	 came	 on	 the	 scene.	 Nothing	 about	 many	 organization	 patterns	 constrain	 them	 to	 any	 particular	
software	development	process	(including	agile	processes)	or	specific	kinds	of	organizations.	Consequently,	we	
find	them	to	be	broadly	useful	for	evolving	project	and	product	management,	software	development	practices,	
and	the	structures	of	organizations	in	response	to	ongoing	change.		

Fearless	 Change	 patterns	 were	 written	 for	 individuals	 looking	 to	 introduce	 new	 ideas	 into	 their	
organizations.	Initially	published	in	papers	at	PLoP,	these	patterns	continue	to	evolve.	They	have	been	collected	
into	two	books,	Fearless	Change:	Patterns	for	Introducing	New	Ideas	[RM]	and	More	Fearless	Change:	Strategies	
for	Making	Your	Ideas	Happen	[MR].	And	now	there	is	a	curated	website,	https://fearlesschangepatterns.com,	
that	offers	additional	resources	and	updated	information.		

We	 consider	 Organizational	 Patterns	 and	 Fearless	 Change	 Patterns	 to	 be	 good	 examples	 of	 generative	
patterns.	 Because	 the	 cultures	 (e.g.,	 the	 values,	 principles,	 behavior,	 and	 beliefs)	 that	 lie	 underneath	 these	
pattern	 collections/languages	 are	 highly	 aligned,	 their	 individual	 patterns	 can	 operate	 together	 in	 creating	
solutions	that	are	richer	than	what	could	emerge	from	each	individual	language.	

The	Magic	Backlog	patterns	share	the	same	culture,	enabling	multi-language	pattern	interactions	between	all	
three	languages:		

1. In	a	team	where	the	Developer	Controls	Process	the	team	Involve(s)	Everyone	to	define	the	Backlog	Rules	
that	help	them	ensure	the	consistency	and	correctness	of	their	backlog	items	that	they	depend	on	for	
their	internal	team	workflows.	

https://fearlesschangepatterns.com/

Exploring	the	Generative	Nature	of	Patterns:	Page	-	8	

2. The	 new	UI	 Designer	 on	 the	 team	 realizes	 that	most	 of	 the	 team	members	 are	 unfamiliar	with	 UX	
workflows	 and	Ask(s)	 for	Help	 from	 a	 seasoned	UI	Designer	 from	 another	 project	 and	 the	 assigned	
Surrogate	Customers	 on	her	own	project	 team	 to	create	 the	People	 backlog	 items	 that	 represent	 the	
users1.	

	
Taken	together,	we	find	that	the	organizational	and	change	patterns	offer	a	powerful	combination	of	tools	for	
individual	and	collective	action.	We	now	perceive	that	organizational	structure	is	more	fluid	than	we	initially	
thought	possible	and	recognize	the	power	of	 individuals	to	affect	organizational	change.	Not	only	have	these	
patterns	been	effectively	used	to	change	organizations	we’ve	been	part	of,	but	they’ve	also	changed	us.	Some	of	
the	patterns	have	become	our	 “constant	 companions”	 as	 part	 of	 our	 own	 toolbox	 for	 organizational	 change	
efforts	that	we	have	been	involved	in.	Noë	claims	that	art	and	philosophy	(and	for	us	this	includes	patterns)	have	
such	an	important	place	in	our	lives	because	they	provide	ways	to	“work	ourselves	over	and	make	ourselves	
anew,	individually	and	ensemble.”	

As	we	have	observed,	there	are	times	where	patterns	from	multiple	languages	work	well	together,	and	are	
needed	together	for	completeness.	At	the	same	time	we	also	find	gaps	in	pattern	languages	that	leave	the	creator	
in	need	of	adding	their	own.	As	John	Vlissides	points	out:	“…	patterns	are	unlikely	to	cover	every	aspect	of	an	
architecture.	 Show	me	a	nontrivial	 design	and	 I’ll	 show	you	 lots	of	design	 issues	 that	no	pattern	addresses.	
Perhaps	they	are	not	common	or	recurring	issues,	or	if	they	are,	they	have	yet	to	be	written	up	in	pattern	form.	
In	any	event,	it’s	up	to	you	to	fill	the	whitespace	between	patterns	with	your	own	creativity.”	[Vlis]	It	is	also	up	
to	you	to	adapt	and	adjust	the	solution	to	fit	your	exact	needs,	to	derive	the	essence	of	any	pattern	and	create	
your	own	implementation,	and	to	combine	together	patterns	from	various	languages	to	create	your	own.	

In	planning	her	new	house,	Lise	consulted	A	Pattern	Language	by	Alexander	[Alex]	and	found	several	patterns	
that	are	a	direct	match	with	the	family’s	expressed	requirements,	for	example	Radiant	Heat	(230)	and	Sleeping	
to	 the	 East	 (138).	 But	 she	 needed	 to	 add	 her	 own	patterns	 to	 support	 elderly	 or	 disabled	 homeowners,	 for	
example	Low	Storage	for	Accessibility.	And	there	were	patterns	that	are	incompatible	with	her	pets,	like	Indoor	
Windows	(194)	which	is	dangerous	to	her	parrots	that	are	allowed	to	fly	loose	in	the	house.	Now	there	may	be	
other	pattern	languages	that	can	help	fill	the	void	if	they	can	be	identified.	But	more	likely,	many	of	the	solutions,	
although	proven	over	time,	are	not	documented	and	the	spaces	must	be	filled	by	the	combined	creativity	of	the	
architect	and	the	user.	

7. GENERATIVITY	AND	LEARNING	

If	your	goal	is	to	quickly	solve	an	immediate	problem,	you	only	need	to	learn	enough	about	a	pattern	in	order	to	
use	it.	But	when	you	are	open	to	re-examining	your	underlying	beliefs	and	values,	which	means	that	you	are	
engaging	in	Double	Loop	Learning	(Figure	2),	you	are	likely	to	also	want	to	adjust	those	values	and	beliefs	[Arg].	
Generative	patterns	would	be	more	effective	guides	for	this	kind	of	reflection	and	learning	if	their	values	were	
more	explicit.		

Figure	2.	Single	and	double	loop	learning.	

1	Developer	Controls	Process	and	Surrogate	Customers	are	from	the	Organizational	Patterns	
		Involve	Everyone	and	Ask	for	Help	are	from	Fearless	Change	Patterns	
		Backlog	Rules	and	People	are	from	the	Magic	Backlog	Patterns	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	9	

	
Single	loop	learning	is	focused	on	solving	an	immediate	problem;	double	loop	learning	entails	examining	beliefs	
and	assumptions	and	then	taking	appropriate	actions.	

In	some	ways,	generative	patterns	and	pattern	languages,	along	with	their	values,	can	coach	you	through	a	
thought	process	that	enables	you	to	discover	a	solution	you	believe	in	while	allowing	for	ongoing	learning	and	
reflection.		

We	believe	that	some	patterns	can	support	the	double	loop	learning	process	by	being	generative	in	nature	
while	at	the	same	time	being	able	to	be	applied	simply.	Maybe	really	good	patterns	serve	both	purposes—they	
provide	a	basic	and	direct	route	for	straightforward	use	while	also	being	valuable	to	those	who	are	looking	for	
deeper	quality.	We	do	not	mean	to	imply	that	these	patterns	need	to	provide	both	a	simple	and	a	more	complex	
solution,	but	rather	that	they	might	serve	a	dual	purpose	in	speaking	to	both	the	novice	and	to	the	experienced	
user	who	will	see	more	subtleties	and	sophistication	in	the	pattern	descriptions.		

This	is	what	Lise	calls	“SpongeBob	patterns.”	There	is	a	story	behind	this:	Many	years	ago,	her	family	rented	
a	cabin	for	Easter	vacation.	They	brought	some	DVDs	for	entertainment,	including	the	first	SpongeBob	movie	for	
the	5-year-old.	It	should	be	added	that	Lise	had	a	very	negative	opinion	about	a	sponge	cartoon	and	thought	it	
ridiculous	with	all	the	backpacks	and	t-shirts	and	whatnot	with	the	SpongeBob	theme.	Really!	But	being	stuck	
with	a	single	TV	in	the	cabin	the	family	sat	down	to	watch	the	movie	together.	To	their	total	surprise	they	all	
loved	it—the	old	genetics	professor	grandfather,	Dad	the	historian	who	was	not	much	into	cartoons	whatsoever,	
the	busy	mom,	and	the	aloof	older	brother	aged	thirteen.	They	all	laughed	so	much	the	five-year-old	got	a	bit	
upset—it	was	after	all	his	movie!	The	humor	worked	on	many	levels	at	the	same	time	(Figure	3).		

	

	

	

	

Figure	3.	Reddit	thread	about	a	Sponge	Bob	episode	[Red]	

SpongeBob	patterns	have	this	quality	of	working	on	several	levels.	As	an	example,	consider	the	first	pattern	in	
our	Magic	Backlog	Patterns	that	deals	with	how	to	structure	the	backlog.	Here	is	a	short	version:	
	
Pattern:	Frame	
	
How	do	you	organize	the	main	structure	of	the	backlog	to	best	support	a	variety	of	users?	
You	want	a	backlog	that	supports	the	extended	development	team.	You	must	take	into	account	the	different	users	
and	 support	 their	 various	 activities.	 Their	 needs	 can	 be	 quite	 different.	 The	main	 backlog	 structure	 should	
represent	the	overall	product	in	a	way	that	all	users	are	comfortable	with.	They	should	be	able	to	easily	navigate	
from	a	high-level	overview	to	details.	
	
Choose	a	backlog	structure	that	represents	a	functional	breakdown	of	your	system.		
Create	a	hierarchical	structure	and	link	items	in	this	structure	in	a	way	that	best	represents	the	product	to	the	
backlog	users.	A	functional	structure	is	a	model	that	most	likely	aligns	the	understanding	for	most	roles	on	the	
development	team.	Also,	a	functional	structure	typically	takes	shape	earlier	in	the	development	cycle	than	an	
architectural	view.	Any	primary	structure	for	your	backlog	should	be	able	to	represent	relationships	between	
other	backlog	objects	since	any	activity	should	be	traceable	to	a	business	requirement.	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	10	

Figure	4.	Repeated	use	of	Frame	pattern	

The	first	structure	of	the	backlog	only	has	two	levels	of	requirements.	Later	on,	the	Frame	is	restructured	with	
more	levels	(Figure	4).	Repeated	use	of	the	pattern	will	add	additional	backlog	item	types	like	risk,	test,	defect,	
etc.	into	a	larger	structural	model.	The	patterns	grow	with	the	maturity	of	the	product	and	with	the	expanded	
workflows	of	the	team.	Each	time	the	pattern	is	used	it	builds	something	new	that	reflects	the	additional	needs	
and	further	understanding	of	the	team.	Single	loop	learning	is	used	for	immediate	improvements	of	the	backlog,	
while	the	double	loop	learning	impacts	the	team’s	collaboration	and	internal	workflows,	which	again	informs	
the	further	development	of	the	backlog	structure.	

8. USING	GENERATIVE	PATTERNS	

A	pattern	 language	 that	 supports	evolution	allows	 for	an	 iterative	process	where	 the	patterns	are	gradually	
applied	in	their	full	complexity—unfolding	over	time	as	the	team	needs	more	sophistication	and	are	ready	to	
benefit	from	this	richness.	This	implies	that	the	patterns	themselves	must	somewhat	work	for	novices,	while	
mostly	 being	 aimed	 at	 people	 with	 more	 experience.	 Our	 backlog	 pattern	 collection	 does	 offer	 proposed	
sequences	 that	gradually	 take	 the	creators	of	a	backlog	 from	the	basics	 to	more	advanced	practices.	But	we	
should	emphasize	that	these	patterns	are	meant	to	be	employed	and	refined	over	time	(“Rome	was	not	built	in	
a	day”).	As	seen	in	the	example	above,	the	backlog	Rules	will	change	as	the	backlog	Frame	gets	more	complex.	
The	roles	who	make	the	Rules	may	change	too,	for	instance	if	the	initial	project	grows	into	a	large	program.	

For	a	backlog,	the	evolution	of	applying,	refining,	and	adapting	patterns	(and	even	adding	additional	ones)	
could	look	like	this:	

In	the	early	days	the	team	is	doing	fine	with	the	basic	application	of	the	patterns.	As	shown	in	figure	2,	the	
backlog	Frame	is	simple,	there	is	a	limited	number	of	backlog	item	types,	and	a	limited	number	of	Connections	
(relationships)	between	item	types.	The	Answers	(insights)	that	the	team	depend	on	are	simple	and	dashboards	
rather	basic.	

As	the	product	becomes	more	complex,	the	Frame	may	need	to	be	deeper	and	wider.	Additional	backlog	item	
types	are	added	to	the	backlog	with	new	Connections	defined.	With	the	larger	product	comes	a	larger	team.	In	
the	same	way	that	not	every	team	member	is	driving	the	main	architecture	of	a	solution,	so	too	is	the	task	of	
constructing	the	backlog	and	ensuring	that	it	serves	the	needs	of	the	team.	Most	likely	this	activity	is	done	by	
only	a	few	people	(maybe	the	product	owner	and	the	software	project	manager).	The	people	that	take	ownership	
of	managing	the	backlog	constitute	a	backlog	Community	of	Practice	(CoP),	or	curatorship,	within	the	team.	A	
backlog	CoP	 is	 likely	 interested	 in	utilizing	backlog	patterns	as	a	way	to	accelerate	their	solution	and	 is	also	
possibly	interested	in	the	quality	of	the	backlog	and	in	being	part	of	a	larger	community.		

As	the	development	effort	matures,	solutions	are	tested	and	either	incorporated	or	discarded.	Solutions	will	
be	 adapted	 to	 the	 context	 and	 to	 the	value	 system	of	 the	organization.	The	 larger	 and	more	distributed	 the	
product	team	becomes,	the	more	need	there	is	to	document	the	backlog	practices	and	ensure	team	members	
understand	and	buy	into	the	“rules	of	engagement.”	Although	there	are	a	smaller	number	of	people	who	own	the	
backlog	and	are	the	keepers	of	its	quality	and	integrity,	it	is	still	important	that	all	who	“live”	in	the	backlog	and	
are	contributing	to	its	contents	are	informed	users.	Just	like	the	people	who	live	in	a	house	do	not	need	to	know	
the	architectural	patterns	that	were	applied	to	design	it,	they	still	need	to	understand	how	to	“use”	it	for	it	to	
work	best	for	them.	And	likewise,	the	architect	needs	to	understand	the	people	who	will	live	there	to	design	a	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	11	

house	that	works	best	for	those	who	dwell	there.	The	curators	become	the	CoP	core	and	the	users	become	the	
outer	circles	of	the	CoP.		

While	 the	 crafting	of	 a	 pattern	 language	 should	 strive	 towards	 generativity,	 the	 real	 validation	 comes	 in	
observing	the	language	in	use.	Only	when	there	is	an	active	community	of	users—the	CoP—will	the	language	be	
able	to	adapt	and	solidify.	At	this	point	it	has	created	something	more	than	a	direct	solution—it	has	created	the	
necessary	support	for	sustained	evolution.	

9. DESIGNING	GENERATIVE	PATTERN	LANGUAGES	

In	our	discussions	about	generative	patterns,	we	also	came	to	realize	that	a	pattern	language	consists	of	core	
patterns	that	drive	the	solutions	forward,	and	lesser	patterns	that	have	more	mundane	supporting	roles.	In	the	
Magic	Backlog	patterns,	the	backlog	Rules	is	a	core	pattern	that	influences	not	only	the	quality	of	the	backlog	but	
also	the	quality	of	the	internal	team	workflows.	It	has	a	strong	generative	property.	A	pattern	like	Connector	is	
one	that	we	would	classify	as	supporting;	it	does	not	have	the	same	ability	to	create	something	more	than	its	
basic	purpose.	This	thinking	has	led	us	to	focus	more	on	the	generative	qualities	of	an	overall	pattern	language	
than	its	individual	patterns.	

When	you	are	structuring	your	knowledge	into	patterns,	you	are	in	effect	designing	a	language.	To	be	clear,	
this	is	not	to	be	confused	with	trying	to	invent	patterns!	But	you	have	a	body	of	knowledge,	and	you	need	to	
consider	how	you	can	make	this	as	accessible	and	useful	to	others	as	possible.	And	how	it	can	bring	the	most	
value.	Christian	Kohls	remarks	that	one	key	to	generative	patterns	is	how	they	communicate:	“Rather	than	telling	
us	exactly	what	to	do	step	by	step	(like	a	micro	script)	a	generative	pattern	tells	us	how	to	react	to	the	forces.”	
[Kohl]	

Generativity	 isn’t	 prescriptive.	 Kohls	 further	 observes:	 “A	 path	 is	 followed	 and	 created	 by	 performing	 a	
sequence	of	steps;	it	is	a	process	in	which	the	thing—the	path	itself—is	generated.	A	particular	hike	along	a	path	
unfolds	in	the	process	of	walking.	It	cannot	be	planned	fully	in	advance.	If	a	stone	is	on	the	road,	a	hiker	needs	to	
react,	and	the	particular	course	is	adapted	accordingly.	If	the	hiker	spots	a	beautiful	flower	or	butterfly	he	stops	
at	unpredictable	times.	A	map	of	paths	does	not	prescribe	the	exact	sequence	of	steps	but	rather	offers	directions	
and	 constraints.	The	hike	 is	 volatile;	 each	 step	 is	 a	 transformation	of	 the	 current	 situation.	At	 any	 time,	 the	
current	context	needs	to	be	re-evaluated	to	account	[for]	the	local	forces.	A	path	description	that	is	generative	
tells	you	how	to	proceed	in	the	sequence	of	circumstances:	‘when	you	see	the	big	oak	tree,	you	should	keep	right	
until	you	find	a	place	in	the	river	that	is	not	very	deep,	so	that	you	can	cross	it	barefoot.’	 	 	 	

Instead	of	 having	 a	 geographic	map	with	 a	bird’s	 eye	perspective,	 demotic	 instructions	or	 sketches	on	 a	
napkin	concentrate	on	 the	actions	and	milestones	 that	are	 important	 to	 follow	 the	path	successfully.	 In	 that	
respect	informal	descriptions	are	quite	precise	because	they	take	into	account	what	actually	matters	in	the	given	
context.	 The	 form	 of	 the	 description—watching	 out	 for	 landmarks,	 describing	 conditions	 for	 the	 next	
operation—provides	context-based	instructions.”	

When	Lise,	at	her	work,	started	being	serious	about	the	backlog	(when	they	had	grown	from	a	small	tribe	
working	on	a	single	product,	 to	a	 large	program	supporting	multiple	products	and	having	 teams	distributed	
across	the	globe),	she	tried	to	find	guidance	on	good	quality	backlogs.	But	neither	internally,	nor	externally	did	
she	 find	 help	 above	 the	 level	 of	 backlog	 basics	 provided	 by	 the	 tool	 vendors	 (for	 example,	 the	 ADO	
documentation	from	Microsoft).		

But	if	she	had	found	something	like	our	backlog	patterns,	would	she	and	her	colleagues	have	been	able	to	get	
the	 best	 out	 of	 them?	 Such	 a	 pattern	 collection	would	 have	 been	 helpful,	 but	we	 are	 not	 sure	 she	 and	 her	
colleagues	would	have	been	able	to	take	the	patterns	and	accelerate	the	iterative	process	of	improving	not	only	
the	backlog	but	also	the	team	processes.	Most	likely	they	would	have	had	a	mechanistic	implementation	similar	
to	the	poor	Scrum	implementations	that	give	agile	development	a	bad	reputation.	

So	then,	what	would	the	design	process	look	like	for	the	gradual	development	of	a	pattern	language	with	the	
generative	qualities	we	are	looking	for?	We	think	it	starts	small	and	practical,	and	then	gradually	matures	into	
more	sophistication.	Practices	start	being	recognized	and	repeated,	and	eventually	they	are	also	documented	as	
patterns.	The	pattern	names	over	time	become	part	of	the	vocabulary,	and	a	language	starts	taking	shape.	For	
the	language	to	take	on	a	more	significant	role	and	become	known	throughout	an	organization,	or	in	the	software	
community	 at	 large,	 it	 needs	 a	 Community	 of	 Practice	 (COP)	 composed	 of	 people	 who	 are	 interested	 and	
enthusiastic	about	using,	refining,	and	driving	the	language	forward.	This	process	is	shown	in	Figure	5.	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	12	

Figure	5.	The	growth	of	a	pattern	language	

Patterns	 and	pattern	 sequences	 are	 used	 and	 reused	over	 and	over	 by	 the	 same	people,	 and	by	new	users.	
Learning	is	incorporated	back	into	the	language	where	some	practices	evolve	and	strengthen	while	others	may	
fall	out	of	use	and	be	removed.	 Just	 like	the	architecting	of	a	software	system,	 the	pattern	 language	must	be	
restructured,	and	patterns	revised	and	reworked	to	stay	current	and	useful.	

As	a	pattern	language	grows	and	matures	it	becomes	easier	to	see	how	it	complements	and	interacts	with	
other	pattern	languages	in	the	same	or	related	domains.	In	Figure	6,	we	try	to	visualize	this	with	pattern	domains	
(Organization,	Process,	Quality,	and	Design)	with	pattern	languages	within	the	domains.	Not	only	do	the	domains	
and	the	patterns	create	a	larger	body	of	knowledge	together,	but	there	is	a	whole	ecosystem	of	understanding	
that	incorporates	many	sources	of	knowledge,	some	that	are	thoroughly	documented	and	others	that	are	more	
fluid	and	based	on	human	interaction.	

Figure	6.	Illustration	of	Pattern	Languages	in	an	Ecosystem	of	Knowledge	

Most	pattern	authors	will	focus	primarily	on	their	own	pattern	language	early	on	in	their	work,	when	the	bulk	
of	 the	patterns	are	being	captured	and	matured.	Gradually	they	will	become	aware	of	relationships	between	
their	patterns	and	other	languages,	which	enables	them	to	strengthen	and	improve	their	pattern	language	by	
pulling	in	and	referring	to	additional	sources.	

From	the	early	discussions	on	generativity	in	the	software	community	we	see	two	schools	of	thought	that	a	
patterns	author	should	be	consciously	aware	of	in	their	pattern	writing.	First,	there	is	the	idea	that	a	generative	
pattern	will	create	emergent	behavior	that	is	the	actual	goal	of	the	pattern,	but	that	is	never	explicitly	stated	in	
the	pattern	solution.	Unless	this	implicit	goal	is	somehow	present	in	the	forces	or	resulting	context	descriptions,	
this	kind	of	generative	pattern	leaves	the	user	uninformed	about	the	deeper	reasons	behind	the	pattern;	this	
knowledge	stays	with	the	pattern	author.	One	can	argue	that	this	puts	less	demand	on	the	user,	but	also	that	it	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	13	

doesn’t	 encourage	 the	 user	 to	 actively	 explore	 solutions	 and	 consciously	 grow	 their	 expertise	 and	
understanding.		

Alternatively,	the	pattern	author	can	emphasize	the	ability	of	a	generative	pattern	to	teach,	while	providing	
a	high	degree	of	freedom	in	the	solution.	This	may	make	the	pattern	more	difficult	to	apply,	but	also	way	more	
interesting	to	a	knowledgeable	and	experienced	user.	

We	 are	 not	 saying	 that	 one	 way	 of	 achieving	 generativity	 is	 better	 than	 another.	 It	 depends	 on	 the	
characteristics	of	the	intended	pattern	users	and	the	goals	of	the	pattern	author	(for	example,	whether	to	teach	
or	to	offer	simple,	practical	advice).	

And	yet,	regardless	of	the	pattern	author’s	intent,	users	of	patterns	or	a	pattern	language	will	come	at	the	
material	from	different	perspectives.	They’ll	be	trying	to	tie	in	these	patterns	to	what	they	already	know	and	do,	
and	 testing	 and	adapting	 the	 solutions	 to	 their	needs.	 It	 is	 only	 through	 this	 iterative,	messy,	 unpredictable	
process	that	the	patterns	get	refined,	and	that	the	generativity	really	comes	into	play	in	creating	new	solutions.	

10. CONCLUSIONS	
Generative	patterns	tend	to	resolve	design	problems	while	supporting	a	wide	range	of	possible	solutions.	Sure,	
they	resolve	problems,	but	they	also	have	the	potential	to	radically	change	the	problem	landscape.	

Rarely,	do	individual	patterns	have	significant	impact.	Rarely,	can	any	individual	pattern	be	said	to	result	in	
design	breakthroughs.	It	is	only	through	repeatedly	adapting	and	applying	multiple	patterns	(as	found	in	pattern	
languages	and	through	experience),	paying	attention	to	their	cumulative	effects,	and	tweaking	and	re-tweaking	
your	design	that	you	break	out	of	the	ordinary.	

Our	thoughts	on	generativity	resonate	with	Parker	Richards,	staff	editor	of	the	Time	Opinion	who	writes,	
“Inefficiency	is	generative;	inefficiency	is	where	we	source	our	ideas,	our	inspirations,	our	conceptions	of	a	world	
of	endless	paths	and	journeys	rather	than	one	of	monotonous	drudgery	occupied	only	in	repetitive	labor.	A	life	
whimsically	lived,	a	society	whimsically	(dis)ordered,	is	one	that	promotes	freedom	of	thought,	even	as	it	knows	
many	of	the	freely	found	thoughts	won’t	be	all	that	useful.”	[Rich]	

It	 is	 as	 if	 a	 force	 field	 for	 positive	 change	 has	 been	 set	 in	 place	 by	 generative	 patterns.	 Only	 then	 can	
unforeseen	design	potentials	appear.	But	it	is	up	to	you,	the	maker,	to	breathe	life	into	and	sustain	the	quality	of	
your	design.	Generativity	isn’t	a	fast	burn.	And	it	doesn’t	follow	a	predictable	path.	

So,	what	exactly	is	pattern	generativity?	We	have	avoided	formulating	a	precise	definition	because	we	want	
to	 leave	 room	 for	you,	 the	 reader,	 to	 think	deeply	about	generativity	and	 join	us	 in	 conversation.	How	does	
pattern	generativity	help	you	in	creating	things	of	quality?	

11. ACKNOWLEDGEMENTS	
Thank	you,	James	Noble,	for	challenging	us	with	your	questions.	As	a	shepherd	you	didn’t	let	us	off	the	hook.	
Your	reviews	caused	us	to	do	some	deep	thinking	and	basically	to	rewrite	our	paper	more	or	less	from	scratch.	
We	think	that	was	a	victory	for	you	and	beneficial	for	us.	Much	appreciation!!	

To	our	PLoP	workshop	colleagues—we	are	very	grateful	for	your	feedback,	and	we	have	tried	to	use	it	wisely	
to	revise	the	paper	and	make	it	a	better	read!		

To	Richard	Gabriel	and	Chris	Kohls,	thanks	for	sharing	your	perspectives	on	pattern	generativity	with	us—
you,	too,	made	us	revisit	and	deepen	our	understanding	of	generativity.	
 	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	14	

12. APPENDIX	A:	SUMMARY	OF	MAGIC	BACKLOG	PATTERNS	

Pattern	name	 Description	

Frame	

How	do	you	organize	the	main	structure	of	the	backlog	to	best	provide	the	benefits	of	a	
quality	backlog	to	a	variety	of	users?	
	
Choose	a	backlog	structure	that	represents	a	functional	breakdown	of	your	system.	Create	
a	hierarchical	structure	and	link	items	in	this	structure	in	a	way	that	best	represents	the	
product	to	the	backlog	users.	A	functional	structure	is	a	model	that	most	likely	aligns	the	
understanding	for	most	roles	on	the	development	team.	

Views	

How	can	the	backlog	provide	representations	of	a	product	that	is	intuitive	to	a	variety	of	
user	roles?	
	
Create	additional	backlog	structures	to	reflect	alternate	views	of	the	product,	for	instance	
an	architectural	view	and	a	quality	view.	Lower-level	backlog	items	can	be	linked	both	to	
items	in	the	functional	product	structure	(the	Frame)	and	to	items	in	the	alternate	
structures.	As	an	example,	a	User	Story	can	be	linked	both	to	a	main	Feature	(in	the	
Frame)	and	to	a	Subsystem	(in	the	architectural	view).	

People	

How	can	you	represent	the	various	aspects	of	your	system’s	users	in	a	backlog?	
	
Create	backlog	items	for	personas	to	cover	the	dimensions	of	user	profiles	and	associate	
the	personas	with	the	appropriate	functional	backlog	items.	Their	descriptions	are	then	
readily	available	for	any	team	member	with	access	to	the	backlog.	Either	tag	a	user	story	
with	the	name	of	the	persona	or	link	the	persona	backlog	item	to	the	functional	item.	

Tales	

How	can	you	improve	the	understanding	of	how	users	interact	with	the	system	and	the	
impact	on	dependencies	between	individual	user	stories?	
	
Include	narratives	that	give	a	free-form	representation	of	product	usage	in	your	backlog.	
Most	likely	your	narrative	will	span	multiple	user	stories,	and	the	natural	level	to	link	it	in	
is	to	the	feature	level.	The	actual	text	for	the	narrative	is	captured	in	a	document	which	is	
then	uploaded	as	an	attachment	to	the	narrative	backlog	item.	

Usage	Models	

How	can	you	improve	the	understanding	of	how	individual	user	stories	contribute	to	a	
business	transaction	or	user	goal?	
	
Enrich	your	backlog	with	models	that	provide	a	structured	representation	of	product	
usage.	Each	usage	model	represents	a	business	transaction	or	a	use	of	the	system	as	a	
whole	to	accomplish	a	complex	task.	The	purpose	of	the	model	is	to	improve	your	
understanding	of	how	the	system	is	used	and	provide	a	tool	to	prioritize,	plan,	and	verify	
your	product	deliveries.	Possible	models	are	Use	Cases	and	Business	Process	Models.	

Placeholders	

How	can	you	represent	partly	unknown	functionality	in	your	backlog?	
	
Create	temporary	backlog	items	as	placeholders	to	be	exchanged	for	detailed	items	later,	
when	they	have	been	elaborated.	When	the	detailed	items	are	created,	you	will	want	to	
replace	your	placeholder	backlog	item	with	the	new	detailed	items.	If	you	instead	keep	the	
placeholder	item	and	link	these	details	to	it,	you	will	increase	the	levels	in	your	backlog	
thereby	making	querying	and	backlog	maintenance	that	much	harder.	

Plans	

How	are	the	backlog	items	associated	with	your	plans	for	delivery?	
	
Associate	the	detailed	requirements	slotted	for	the	next	delivery	to	an	entity	representing	
this	delivery.	Tools	normally	associate	backlog	items	with	iterations	and	releases	by	using	
a	planning-related	attribute	on	backlog	items.	Backlog	contents	can	then	be	filtered	based	
on	the	values	of	this	attribute	to	produce	lists	of	items	for	a	specific	release.	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	15	

Pattern	name	 Description	

Connections	

How	can	you	explore	the	diverse	contents	of	your	Application	Lifecycle	Management	
(ALM)	system?	
	
Create	connections	from	other	item	types	to	the	appropriate	requirements	backlog	items.	
You	want	to	establish	these	connections	systematically	following	a	defined	model,	
normally	linking	tests	to	requirements,	defects	to	both	requirements	and	to	the	tests	that	
detect	and/or	verify	the	defect	resolution	and	change	sets	to	the	requirements	they	
implement	or	defects	that	they	resolve.	

Answers	

How	can	your	team	gain	insights	about	the	product	from	the	backlog?	
	
Create	shared	queries	and	reports	that	can	be	reused	by	your	team.	The	primary	focus	
when	extracting	information	from	the	backlog	should	be	on	the	direct	development	team	
needs,	and	not	stakeholders.	The	goal	is	for	the	core	team	to	always	know	where	they	are	
and	be	able	to	prioritize	their	efforts	on	the	most	pressing	work.	

Pipeline	

How	can	you	ensure	that	you	always	have	some	backlog	items	with	sufficient	maturity	to	
enter	the	development	process?	
	
Design	a	process	that	creates	a	steady	stream	of	prepared	backlog	items.	The	process	
works	as	a	pipeline	that	steadily	refills	the	backlog	with	items	with	enough	detail	to	be	
meaningful	to	the	developers.	

Funnel	

How	and	when	do	you	introduce	new	product	ideas	into	your	backlog?	
	
Keep	a	list	of	future	product	ideas	to	explore	that	is	separate	from	your	Product	Backlog.	
When	an	idea	has	been	accepted	into	the	product	scope	and	has	matured	enough	to	be	
represented	by	epics	level	items,	then	introduce	these	into	your	Backlog.	Expect	that	a	
good	portion	of	product	ideas	will	never	be	fully	developed.	Some	may	be	discarded	early	
after	limited	investigation	either	because	they	cannot	be	supported	by	a	business	case,	
because	they	are	too	costly	to	develop,	or	because	they	just	do	not	fit	into	the	portfolio.	

Maintenance	

How	do	you	keep	your	backlog	as	a	reasonably	accurate	representation	of	the	planned	and	
implemented	product?	
	
Regularly	and	consistently	maintain	the	backlog	contents.	Maintaining	the	backlog	is	more	
than	adding	details	and	updating	statuses.	New	contents	need	to	be	added	as	new	
requirements	are	elicited.	Business	priority	changes	will	adjust	the	user	story	
sequence/iteration	planning.	A	maturing	understanding	of	the	product	may	require	
refactoring	of	the	structure	for	the	Frame	and	the	alternate	Views.	Objects	and	attributes	
that	the	team	uses	for	its	planning	and	metrics	need	to	be	updated	as	the	items	go	through	
the	Funnel	and	the	Pipeline	and	then	through	implementation/verification,	making	sure	
that	structure	and	attribute	changes	caused	by	new	material	is	consistently	applied	across	
the	full	set	of	contents.	

Shared	
Definitions	

How	do	you	ensure	that	key	information	in	the	backlog	that	is	used	to	drive	internal	team	
processes	and	to	communicate	with	stakeholders	is	correct	enough	to	be	meaningful?	
	
Develop	and	share	a	core	set	of	definitions	across	the	project	or	program	so	that	the	
attribute	values	of	your	backlog	items	are	consistent	and	can	be	used	for	decision	making	
and	reporting	purposes.	Keep	these	definitions	in	a	shared	space	that	is	easily	accessible	
by	all	team	members,	like	a	project	or	program	wiki.	But	even	more	important,	make	sure	
that	these	definitions	are	actively	used	because	the	team	members	contributed	to	defining	
them,	agree	with	their	definition,	and	know	where	to	find	them.	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	16	

Pattern	name	 Description	

Rules	

How	do	you	protect	the	backlog	from	changes	that	risk	adversely	affecting	key	team	
processes?	
	
Create	role-based	rules	for	backlog	changes	and	only	permit	specific	roles	to	make	those	
changes	that	impact	the	overall	team.	Restrictions	defined	by	these	rules	should	be	only	
for	those	backlog	items	that	impact	the	ability	of	the	project	and/or	program	workflows	to	
run	efficiently,	and	to	items	and	attributes	that	are	part	of	the	commitment	to	
stakeholders.	Individual	team	members	should	have	full	control	of	all	other	items	and	
their	attributes	that	relate	to	their	own	work.	

Remodel	

How	do	you	deal	with	a	mature	product	backlog	whose	structure	is	no	longer	efficiently	
supporting	the	development	team?	
	
Remodel	the	backlog	to	better	represent	the	new	understanding	of	the	product	while	
keeping	core	backlog	items	largely	unchanged.	Changing	the	backlog	Frame	through	
modifying	the	way	items	are	linked	to	each	other	still	fully	preserves	the	definition	of	each	
backlog	item.	So,	an	update	to	better	represent	the	system	functionality	is	most	likely	an	
exercise	in	creating	new/updated	top-level	items	while	keeping	the	contents	of	user	
stories	untouched	and	linking	them	to	this	new	structure.	

Pragmatic	
Program	
Backlogs	

How	do	you	manage	a	program-level	view	of	the	work	of	individual	projects	with	highly	
different	backlog	implementations,	so	that	you	can	better	coordinate	their	work?	
	
Construct	an	additional	backlog	that	has	only	the	Frame	representation	of	the	product	
solution	to	be	built.	The	user	stories	in	this	program-level	backlog	are	normally	on	the	epic	
level	and	will	typically	be	implemented	by	several	project	level	user	stories.	These	user	
stories	will	belong	to	multiple	projects.	Instead	of	tracking	individual	product	backlog	
items,	this	program-level	backlog	enables	you	to	manage	the	work	at	a	higher	level,	
focusing	on	major	features	and	sets	of	related	features.	

Linked	
Program	
Backlogs	

How	do	you	organize	and	manage	the	program-level	backlog	for	a	program	consisting	of	a	
set	of	closely	aligned	projects	when	each	project	has	its	own	mature	and	extensive	backlog	
and	these	backlogs	are	structured	differently?	
	
Create	a	program-level	backlog	where	you	keep	individual	project	backlogs,	and	link	
project	backlog	items	to	the	program	level	backlog	for	traceability.	This	approach	lets	the	
individual	projects	have	their	individual	backlogs	structured	to	support	their	own	way	of	
working	while	still	being	able	to	automate	Answers	on	product	completeness	and	
outstanding	issues.	The	typical	backlog	items	to	link	would	be	user	stories	and	test	cases	
in	the	individual	backlogs	to	the	respective	features	and	test	suites/test	plans	in	the	
product	level	backlog.	

Unified	
Program	
Backlog	

How	do	you	organize	and	manage	the	backlog	for	a	program	consisting	of	closely	aligned	
projects	when	the	projects	have	no	current	backlogs	or	backlogs	that	are	small	and	
structurally	similar?	
	
Define	a	single,	unified	backlog	shared	by	all	the	projects	within	the	program,	but	allow	for	
projects	to	apply	attributes,	tags,	and	filters	that	provide	them	a	specialized	project	level	
view	of	the	contents.	Typically,	the	program	backlog	structure	has	a	set	of	goals,	features,	
and	user	stories	representing	the	user	functionality.	Goals	and	features	are	most	likely	
shared	between	all	teams,	and	there	is	no	need	to	filter	them	at	the	project	level.	The	items	
that	you	will	want	to	view	and	work	with	specifically	on	a	project	level	are	the	user	stories	
and	the	defects.	

 	

Exploring	the	Generative	Nature	of	Patterns:	Page	-	17	

REFERENCES	
[Alex] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S. 1977. A Pattern Language: Towns,

Buildings, Construction. Oxford University Press.
[Alex1979] Alexander, C. 1979. The Timeless Way of Building, Oxford University Press.
[Alex2002] Alexander, C. 2002. The Process of Creating Life: Nature of Order, Book 2: An Essay on the Art of Building and the

Nature of the Universe. Center for Environmental Structure.
[Arg] Argyris, C. Teaching smart people how to learn. 1991. Harvard Business Review. 69 (3): 99–109.
[Arri] Arrigo, D. (2020, December 21). Humans are hard-wired to create. Retrieved on February 9, 2024 from

https://medium.com/extraordinary-humans/humans-are-hard-wired-to-create-ac5894cc604
[CH] Coplien, J. and Harrison, N. 2004. Organizational Patterns of Agile Software Development. Prentice Hall.
[Cope] Coplien, J. 1996. Software Patterns. SIGS Publications.
[Gab] Gabriel, R.P. 1996. Patterns of Software: Tales from the Software Community. Oxford University Press.
[GHJV] Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1995. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley.
[HW2015] Hvatum, L. and Wirfs-Brock, R. 2015. Patterns to Build the Magic Backlog. 20th European Conference on Pattern

Languages of Programming (EuroPLoP), EuroPLoP 2015, July 8-12 2015, 36 pages.
[HW2017] Hvatum, L. and Wirfs-Brock, R. 2017. Pattern Stories and Sequences for the Backlog: Expanding the Magic Backlog

Patterns. 24th Conference on Pattern Languages of Programming (PLoP). PLoP 2017, October 23-25 2017, 26 pages.
[HW2018] Hvatum, L. and Wirfs-Brock, R. 2018. Program Backlog Patterns: Applying the Magic Backlog Patterns. 23rd European

Conference on Pattern Languages of Programming (EuroPLoP). EuroPLoP 2018, July 4-8 2018, 22 pages.
[Jul] JuliusOrange437 (2019, September 16). Comments on, Only the OG’s will remember. Reddit. Retrieved February 9, 2024

from https://www.reddit.com/r/memes/comments/gnmxja/only_the_ogs_will_remember/
[Kohl] Kohls, Christian. 2013. The Theories of Design Patterns and their Practical Implications exemplified for E-Learning

Patterns. [Doctoral dissertation, der Katholischen Universität Eichstätt-Ingolstadt].
[Noë] Noë, A. 2023. The Entanglement: How Art and Philosophy Make Us What We Are. Princeton University Press.
[MR] Manns, M. and Rising, L. 2015. More Fearless Change: Strategies for Making Your Ideas Happen. Addison-Wesley.
[RM] Rising, L. and Manns, M. Fearless Change: Patterns for Introducing New Ideas. Addison-Wesley, 2004.
[Rich]Richards, P. (2023, October 5). The New York Times. Down With Efficiency! (When We Get Around to It.)

https://www.nytimes.com/2023/10/05/opinion/efficiency-optimization-whimsy.html.
[SC] Sutherland, J., Coplien, J. et al. 2019. A Scrum Book: The Spirit of the Game. Pragmatic Bookshelf.
[Vlis] Vlissides, J. 1998. Pattern Hatching: Design Patterns Applied. Addison-Wesley Professional.
[Wie] Wiegers, K. and Beatty, J. 2013, Software Requirements Third Edition. Microsoft Press.
[WH2016] Wirfs-Brock, R. and Hvatum, L. 2016. More Patterns for the Magic Backlog. 23rd Conference on Pattern Languages of

Programming (PLoP). PLoP 2016, October 24-26, 2016, 18 pages.
[WH2018] Wirfs-Brock, R. and Hvatum, L. 2018 Even More Patterns for the Magic Backlog. 25th Conference on Pattern Languages

of Programming (PLoP). Plop 2018, October 24-26, 2018, 17 pages.
[WH2019] Wirfs-Brock, R. and Hvatum, L. 2019. Who Will Read My Patterns? On Designing a Patterns Book for Target Readers.

26th Conference on Pattern Languages of Programs (PLoP). PLoP 2019, October 7-10, 2019, 22 pages.
[Wiki] The Toyota Way. 2023. Retrieved February 9, 2024 from https://en.wikipedia.org/wiki/The_Toyota_Way.
[WM] Wirfs-Brock, R. and McKean. 2002. A. Object Design: Roles, Responsibilities, and Collaborations. Addison-Wesley

Professional.	

https://www.nytimes.com/2023/10/05/opinion/efficiency-optimization-whimsy.html
https://en.wikipedia.org/wiki/The_Toyota_Way

