
A Third Generation Smalltalk-80 TM Implementation 

Patrick J. CaudUl 

Allen Wirfs-Brock 

Computer Research Laboratory 
Tektronix Laboratories 

P.O. Box 500 MS 50-662 
Beaverton, Oregon 97077 

Abstract 

A new, high performance SmaUtalk- 
80 TM implementation is described which 
builds directly upon two previous implemen- 
tation efforts. This implementation supports 
a large object space while retaining compati- 
bility with previous Smalltalk-80 TM images. 
The implementation utilizes a interpreter 
which incorporates a generation based gar- 
bage collector and which does not have an 
object table. This paper describes the design 
decisions which lead to this implementation 
and reports preliminary performance results. 

Introduction 

Tektronix Large Object Space 
Smalltalk (4406 Smalltalk) is a high perfor- 
mance implementation of the Smalltalk-80 TM 

System for members of the Tektronix 4400 
series of workstations using the Motorola 
68020 processor. The major goal of this 
implementation was the ability to support a 
very large number of active objects. 

A previous Smalltalk implementation 
at Tektronix had demonstrated the feasibility 
of using a microprocessor to host high- 
performance Smalltalk implementations. 
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That implementation, following the 
Smailtalk-80 TM virtual machine specification 
IGOR83], was restricted to an object space of 
approximately 32,000 objects. As applica- 
tions developers gained experience with this 
system the limited object space was found to 
be the major restriction of the system. 
Because of this limitation, application 
developers began to think of Smalltalk as a 
system which was excellent for application 
prototyping but which was not suitable for 
large scale applications development. 4406 
Smalltalk is intended to be usable for the 
development and delivery of large applica- 
tions systems. 

A Third Generation Design 

4406 Smalltalk represents the third 
major Smalltalk interpreter implementation 
within Tektronix Laboratories. As such, it 
benefited from experience gained from our 
earlier implementations as weU as the experi- 
ence of other Smalltalk developers. 

The first Tektronix Smalltalk-80 TM 

implementation [Mcc83] was a direct imple- 
mentation of the Goldberg and Robson Vir- 
tual Machine specification. It strictly 
adhered to the data representations and algo- 
rithms from the specification and was imple- 
mented in Pascal for the Motorola 68000. 
The dismal performance of this 
implementation[Mcc83a] lead us to the con- 
clusion that SmaIltalk-80 TM interpreters 
needed to be more carefully designed to 
match the capabilities of the host computer. 

Smalltalk-80 is a ~radcmark of Xerox Corpora- 
tion. 
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Our ..second major implementation 
[Wit83, Wir85] was for the Tektronix Mag- 
nolia, an experimental 68000 based worksta- 
tion. For this implementation, data structures 
and representations (e.g. object representa- 
tions in memory and object table layouts) 
were carefully chosen to match to the capa- 
bilities of the Motorola 68000. The inter- 
preter itself was carefully hand-coded in 
assembly language in order to minimize the 
number of instructions to implement each 
bytecode. Most importantly, new storage 
management and garbage collection tech- 
niques were developed. This implementation 
was an order of magnitude faster than the 
first interpreter and ultimately evolved into 
Tektronix 4404 Smalltalk, the first high per- 
formance Smalltalk implementatiorr for a low 
cost workstation. 

In addition to our own implementa- 
tions, we were most strongly influenced by 
the implementation efforts of David Ungar at 
UC Berkeley [Ung85]. Ungar's BS II, 
although exhibiting only modest perfor- 
mance, demonstrated the feasiblity of imple- 
menting Smalltalk without an object table in 
conjunction with a generation based garbage 
collection scheme. 

4406 Smalltalk Design Goals 

Four major goals drove the design of 
the 4406 Smalltalk interpreter. These were: 

1) Provide support for a large number of 
objects. 

2) Increase performance relative to the 
existing 4404 interpreter. 

3) Remove virtual machine design irregu- 
larities caused by the limited object 
space. 

4) Preserve the basic semantics and func- 
tionality of the Smalltalk-80 TM virtual 
machine. 

The 32,000 object limit of the previous 
interpreters had become our major impedi- 
ment to the implementation of serious appli- 
cations using Smalltalk. Any small multiple 
increase of the object space size was con- 

sidered unacceptable since it was assumed 
that applications would soon exceed any such 
new limit. The size of the object space 
should be limited only by the available pro- 
cessor address space. The interpreter should 
efficiently support widely varying object 
space sizes. While early uses of the system 
would be with relatively small applications 
designed for a restricted object space, the 
expectation was that new applications would 
ultimately use hundreds of thousands to mil- 
lions of objects. 

The larger object space needed to be 
achieved without reducing the speed of 
Smalltalk program execution. The major 
goal of the previous interpreter design had 
been the achievement of execution speeds 
adequate for serious development work. This 
goal was achieved but even higher perfor- 
mance levels were needed to support the 
larger applications being considered. An 
important factor contributing to the high per- 
formance of the previous interpreter was its 
mixed strategy approach to garbage collec- 
tion. The collection strategy incorporated 
special allocation zones and representations, 
deferred reference counting, and mark/sweep 
collection. Unfortunately, the interactions 
between the various techniques were 
extremely difficult to understand and debug. 
A secondary goal of the new design was a 
simpler garbage collection strategy which did 
not sacrifice performance. 

The standard Smalltalk-80 TM virtual 
machine design incorporates several irregu- 
larities which were apparently introduced to 
reduce the total number of objects required 
by the standard system. For example. 
instances of class CompiledMethod contain 
both object references (the literals) and 
binary data (the bytecodes) even though the 
object memory architecture expects only 
objects which uniformly contain only object 
references or only binary data. The unusual 
representation was presumably choosen to 
eliminate the need for separate literal and 
bytecode objects for each method. The irreg- 
ular CompiledMothod representation adds 
complexity to the garbage collector (increas- 

120 OOPSLA '86 Proceedings September 1986 



ing garbage collection overhead) and requires 
special primitive methods within the inter- 
preter to support the representation. In addi- 
lion, it is impossible to make subclasses of 
CompiledMethod. A new, large object 
space interpreter design should be able to 
eliminate such irregularities and hence pro- 
vide increased performance and functional- 
Uy. 

Any Sm~talk-80 TM implementation 
must support a complex, pre-existing system 
environment (i.e. the Smatltalk-80 TM pro- 
gramming environment). Such support is 
complicated by system code with dependen- 
ties upon virtual machine implementation 
details. For example, the existence of an 
object table is implicitly assumed by any 
code which uses the become: primitive with 
impunity or which depends upon some order- 
ing of object names. A number of the pro- 
gramming aids assume that enumerating an 
instances of some class or all objects in the 
virtual image is a computafionally tractable 
operation. While this assumption may be 
Irue for a virtual image limited to 32,000 
objects it is probably not role for 
significantly larger object spaces. A large 
object space interpreter needs to continue to 
provide support for such operations in order 
to support the existing system code. 

Such assumptions need to be expurgated 
from the Sm~ta lk  code as the system 
evolves towards much larger vimlal images 
using the new interpreter. 

Design Overview 

4406 Smal]talk uses a pure bytecode 
interpreter, implemented in assembly 
language for the Motorola 68020 processor. 
We chose an interpreter over the dynamic 
translation techniques of Deutsch and Shift- 
man [DES74] because we felt that the perfor- 
mance advantages exhibited by dynamic 
IJanslation were insufficient to justify the 
increased complexity of the implementation. 

Object references (Oops) are 32-bit 
values which incorporate a l-bit tag field to 
distinguish Smalllntegers from object 
pointers. Object pointers directly encode the 
current address of the target object. An 
object table is not used. The size of index- 
able objects is limited only by the available 
address space. 

A generation scavenging dedved 
scheme is used for garbage collecdox~ This 
differs from our previous implementations 
which used a deferred reference counting col- 
lector [DeB76]. As in our tnevious imple- 
mentation, a volatile context stack is used to 
limit the creation of  context objects. 

First field of object 
i i 

Oop of object's class 

Reserved R C 
for garbage IV T u n -  type 
collector T X used I I 

i Region and age 
info for garbage Number of 
collector fixed fields 

31 16 

I 

Hash Value 
i H 

Size (in bytes) of object 
i 

0 

CTX - 1 if this is a context object 

R M T -  1 if this object has a remote 
IMexable pan : 

Type - 0 normal (non-indexable) 
1 byte indexable 
2 word (16-bit) indexable 
3 long (32-M) indexable 
4 pokder indexable 

Figure  1 Object  Header  Format  
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CompiledMethods are represented as a 
composite of separate binary (bytecode) and 
pointer (literal) objects. This makes Com- 
piledMethods transparent to the garbage col- 
lector and permits their subclassing. 

Object Memory Architecture 

Memory is composed of 32-bit words. 
Each word containing an object pointer has 
its most significant bit set and the rest of  the 
word contains the byte address of the object. 
On the 4406, virtual memory hardware can 
be set to ignore bits in the upper portion of 
the address word. A small integer has its 
most significant bit cleared. The rest of  the 
word contains a value in the range 
1,073,741,823 to -1,073,741,824 in 2's com- 
plement notation. The range of small 
integers covers the time critical cases and no 
large integer primitives were implemented. 

Since there is no object table, the 
header of objects has been expanded to a 
three word header [Figure 1] which includes 
information that had been previously stored 
in the object table. This header contains a 
16-bit size field which gives the size of the 
object in bytes. The actual storage size of the 
object is this size rounded up to a multiple of 
four bytes. This allows the size field to indi- 
cate directly the size of byte arrays rather 
than using separate modifiers. There are two 
bytes reserved to hold a copy of the informa- 
tion from the class's instance specification 
field. One of these bytes contains the number 
of fixed fields. The maximum number of 
fixed fields has been reduced to 256, which is 
not considered a significant limitation since 
there are no byte codes to address even that 
many. The object type code has been 
expanded to include the categories byte, 
word, quad and pointer, but there is currently 
no primitive support for quad-hyte data 
objects. There is a bit to show if this object 
is a context. With this information it is 
unnecessary to access an object's class 
object, which might cause a page fault, to 
access the indexable fields of that object. 

In the standard Smalltalk-80 TM system 
the primitive message asOop returns an 
integer value which represents the object's 
position within the object table. This value is 
then commonly used for hashing. In 4406 
Smalltalk a sixteen bit field within the object 
header is filled with a hash code, which is the 
value returned by the primitive message 
asOop.  This is necessary since the garbage 
collector may move objects changing their 
object pointer value. Since this is not enough 
bits to provide a unique value, the message 
asObject is not implemented. There are also 
sixteen bits reserved for use by the garbage 
collector. These maintain, among other 
things, the approximate age of the object in 
the system. 

Indexable objects may be broken into 
two parts, a base part and a remote part 
which contains the indexable fields [Figure 
2]. All object pointers address the base part 
which contains a pointer to the remote sec- 
tion if one exists.[Kra84] With only index- 
able fields stored in these remote sections of 
the object, only array accessing primitives, 
such as at: and at:put:, must be aware of 
them. Any size object with an indexable 
field may have a remote part but we gen- 
erally only create an object with a remote 
part if it is larger than a minimum size. The 
remote indexable part makes growing an 
indexable object much easier as the remote 
pan may be reallocated and only the one 
pointer must be changed, rather than all 
pointers to the object. The remote part has 
its own header which has a 32-bit size field 
allowing objects as big as memory. This 
overcame the 64K byte limitation imposed 
by the 16-bit size field in an object. The 
remote header also contains a back pointer to 
the base object memory and a field for use by 
the garbage collector. The remote parts are 
allocated from a separate heap memory 
managed with a free list. 

In our first Smalltalk interpreter we 
noticed that the reference counting system 
used an excessive amount of processor time. 
This was especially true of  short lived 
objects referenced from a context stack. We 
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Indexable Fields 

Fixed Fields 

Object Header 

Normal Indexable Object 

Remote Pointer 

Fixed Fields 

Object Header 

.... f ,  

Indexable Fields 

Remote Header 

Remote Indexable Object 

Figure 2 Indexable Object Organization 

overcome this problem in our second imple- 
mentation by only reference counting these 
objects when memory ran out, at which time 
objects with zero counts were freed. Refer- 
ence counting also has problems with circu- 
lar garbage which require an additional 
mark-sweep subsystem to periodicly clean 
memory. In a virtual memory system the 
free list caused a very fragmented memory 
with little locality of reference, and had a 
tendency to thrash. With no object table to 
hold the reference counts yet another layer of 
complexity would have been added. Instead 
a stop-and-copy mechanism was used follow- 
ing the leads of Lieberman and 
Hewin[LiH83], Ungar[Ung84] and 
Ballard[Ba182]. Our scheme breaks memory 
down into several regions each of which is a 
pair of Baker half-spaces. All new objects 
are appended to the end of the active memory 
in one region. When the active half-space for 
a region is full, all live objects are copied to 

the other half-space. After a fixed number of 
copies within a region, an object is reallo- 
cared to the next older region. This has the 
advantages of quick ailocadon, short lived 
objects are never seen by the collector, and a 
high locality of reference for new objects. 

When a region fills, the garbage collec- 
tor copies all objects known by the inter- 
prefer from it. Next, objects referred to by 
active contexts are copied, then objects 
referred to by objects in other regions. 
Finally objects referred to by just-copied 
objects are copied. In each case copying is 
usually to the other half-space but could be to 
the next older region. A table of older 
pointers into this region is kept to determine 
active objects within the region. We do this 
to keep from having to scan the older regions 
in their entirity. When this table is scanned, 
the referenced object is copied and the 
pointer is updated at the same time. 
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The system currently has seven regions. 
This appears to be enough to prevent prema- 
ture tenuring of objects, that is placing inter- 
mediate lived objects into permanent storage. 
But it is few enough that objects arc not 
copied too many times before they move into 
a region which is less actively collected. 
This area of the interpreter may be fine tuned 
as we become more familiar with the perfor- 
mance of the system. 

Contexts are both very transicnt and 
contain references to ephemeral objects, 
therefore they account for a large amount of 
the activity of new objects. A lesson we 
learned in the second generation system was 
that by handling contexts differently we 
could achieve great gains in performance. In 
both that system and this one, contexts are 
allocated from a push down stack. Only i f  a 
pointer to a context is created is the context 
convened to a real object. In both systems 
references from context stacks are handled 
specially. In this system when a context 
object is activated a note is made in a special 
table. Stack references are not checked to 
see i f  they refer to a younger object. When a 
garbage collection is about to be made, all 
such activated contexts are scanned and the 
appropriate references are put in the tables. 
This saves the work of checking and mark- 
ing references which are to be immediately 
destroyed. 

The garbage collector provides another 
reason for having remote pans for large 
objects. When a region is salvaged the 
remote part does not have to be moved. 
Since larger objects exhibit a tendency to 
have a longer life this can amount to a large 
saving. Also, a very large object could fill or 
overfill a region, causing many other objects 
to be prematurely aged into an older region. 
I f  only the base part uses space from the 
region then this effect wil l be minimized. 

Primitives 

The primitive become: had to have 
major changes to operate. In our previous 
implementations, become: swapped the 
addresses of the data for two objects in the 

object table, exchanging the meaning of their 
object pointers. This was a relatively cheap 
operation. Now, with no object table, the 
operation is much more difficult. We rely on 
a series of stratagems to get reasonable per- 
refinance out of  the primitive. If the two 
objects are the same size their memory 
representations may be interchanged. A 
large percentage of  the use of become:  is to 
grow the indexable portion of an object. We 
can do this by swapping the base parts of  the 
objects and forcing the indexable parts to be 
remote. If this creates a small remote pan, 
the garbage collector will merge the remote 
part back into the base the next time the 
object is copied. In the worst case, such as 
adding an instance variable to an object, all 
memory must be scanned and pointers to the 
two objects exchanged. This can be speeded 
up by using the reference information 
acquired by the garbage collector to change 
pointers in blder regions. In this last case the 
hash codes must also be exchanged as it is a 
function of the object pointer and not the 
object. 

The primitives relating to the number 
of objects and amount of  core left were 
difficult to define. Since there is no object 
table there is no real limit on the number of  
objects, coreLeft is also difficult because of 
the way in which memory is allocated and 
because there may be dead objects still occu- 
pying memory, We finally implemented a 
new primitive which returns the memory 
used and the total number of objects in the 
system. This is done by scanning all 
memory counting objects and is a slow 
operation, oopsLeft is then answered as an 
estimate from the average size of the objects 
and the amount of free memory. This esti- 
mate is inaccurate and also costly. The 
oopsLimit and coreLimit were left unimple- 
mented. The system wil l  die when it runs out 
of 32M of virtual memory but by that time 
the trashing behavior should be really obnox- 
ious. 

A different problem was encountered 
with somelnstance and nextlnstance. In 
previous versions these were used to scan the 
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object table to find all instances of a class. 
Hence they implicitly assumed some per- 
manent ordering of objects. No such order- 
ing exists since the garbage collector may 
move and reorder objects as part of  its opera- 
tion. A scan of memory would not have 
given the same result if the garbage collector 
became active between calls. In the standard 
image next lnstance was only used in the 
method for alllnstances. So we imple- 
mented this method as a primitive which 
returns an array of the pointers to all objects 
within a given class. The other two messages 
can be implemented using this primitive. 
Since objects are not immediately collected 
when they die, al l lnstanees may find some 
of these zombie objects, unused but uncol- 
lected, and bring them back to life. 

There are no primitives implemented 
for large integers. The new range of small 
integers more than covers the cases for which 
large integer primitives were previously 
used. Since small integers are larger than the 
address range of the machine, they may be 
used for all indexes in array and string han- 
dling. 

Our hardware includes a sophisticated 
floating point processor. We extended the 
primitives for floating point to access some 
of the functions this processor provides. The 
new primitives perform trig and log functions 
at a high rate of speed. The hardware also 
understands small integers and the floating 
point primitives will take small integer argu- 
ments, greatly increasing the speed of expres- 
sions like (aFloat + 1 ). 

Compiled Method Representation 

The representation of instances of class 
CompiledMethod was changed, making it 
consistent with the system's standard object 
architecture. The original form was used to 
reduce the number of objects needed to store 
a method, but with no real limit on the 
number of objects, the new form has several 
advantages. The new class Compiled- 
Method, for instance, may be subclassed. It 
also simplifies the garbage collector because 
there are now no objects which contain both 

binary and object pointer data. A compiled 
method is now represented by a composite 
structure consisting of three objects, a Com- 
piledMethod, a BytecodeArray, and a 
LiteralArray. The root object contains four 
fixed fields: a control header, a source code 
reference, a reference to the BytecodeArray, 
and a reference to the LiteralArray[Figure 3]. 

The header fields provide the control 
information used by the interpreter to execute 
the compiled method. Within the standard 
compiled method representation used by pre- 
vious interpreters, control information was 
divided between a header stored as the first 
literal and an optional header extension 
stored as the last literal. Information needed 
by the interpreter to determine how to exe- 
cute a method was highly encoded and was 
divided among several fields of the header 
and header extension. This control informa- 
tion is now completely encoded within a sin- 
gle field of the new compiled method header. 
This significantly reduces the complexity of  
the interpreter code used to initiate execution 
of a method. In addition, there are now 
sufficient unused bits and encodings to con- 
template extensions to the functionality of 
compiled methods.. 

The source code field is used to locate 
the source code from which the method was 
compiled. It currently stores a small integer 
identifying a location within the standard 
Smalltalk source or changes file. Under the 
old representation, this value was represented 
by a 24-bit integer formed from three extra 
bytecodes added to the end of each compiled 
method. Because of its ad hoe nature, the old 
source code reference representation did not 
easily accommodate alternative mechanisms 
for storing source code. With the new 
representation, subclasses of Compiled- 
Method may use the source code field in any 
way which seems appropriate. For example, 
a subclass might choose to store a string con- 
taining the source code in the source code 
field. 

The LiteralArray holds those object 
references which were stored in the pointer 
part of the old representation. The first literal 
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Additional literals 

First Literal 
Instruction Frame 

A LiteralArmy 
Object Header: Pointer 

indexable, no fixed fields, 
may not be remote. 

m 

Bytec ~des 

A BytecodeArray 
Object Header: Byte 

indexable, no fixed fields, 
may not be remote. 

L Source Code Reference ! 

Instruction Frame --- 

Literal Frame 

.~] Method Header t 

I 
. ~ "  ~ J Object Header: | 

r~ 

LCF (Large Context Flag) Method Action Codes: 
o: This method can use a small context 0: Create a context and execute method 
1: This method requires a large context. 1-255: Execute primitive with this number 

MBZ (Must Be Zero). 256-287: Return instance variable (n-256) of receiver 
Arg. Count Number of arguments this method requires. 288: Return the reciever 
Temp. Count Number of method tempories 289:511: Unused o-- Invalid. 

(exclusive of arguments). 

Figure 3 Compiled Method Structure 
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value, which in the old representation con- 
tained the method header, now stores a refer- 
ence to the bytecode array. This reduces the 
amounting of working state information 
needed by the interpreter. The BytecodeAr- 
ray contains only the actual bytecodes to be 
executed. It is no longer overloaded with 
other information such as literals or source 
code references. 

The literal array could have been 
represented as a pointer indexable part of the 
mot object. This would have reduced a com- 
piled method to a composite of two objects 
instead of three. This choice was not made 
since we assumed that subclasses of Com- 
piledMethod would want to add additional 
instance variables. Support for such sub- 
classes using the two object representation 
would have complicated (and reduced the 
efficiency) of the bytecodes which access 
literals. For this same reason, subclasses of 
LiteralArray may not add any instance vari- 
ables. 

The Smalltalk protocol supported by 
class CompiledMethod is essentially the 
same as in previous versions. This is possible 
since the actual data structure is hidden 
within the class definition. In some cases the 
implementation of the protocol differs 
greatly from previous versions. For example, 
special primitives are no longer needed or 
provided for creating instances of Compiled- 
Method or for accessing literals. In a few 
instances, the protocol of  CompiledMethod 
did not adequately hide implementation 
details. Knowledge of the source code refer- 
ence technique was scattered throughout the 
virtual image with explicit use of size and 
at: messages to access the last three 
bytecodes containing the reference. New 
protocol was created for these situations and 
this protocol is now supported by both 4406 
Smalltalk and the older systems. 

Virtual Image 

The virtual image for the 4406 is a 
direct derivative of the image used in our ear- 
lier implementations. A new subclass of 
Sys temTrace r  was created which, when run 

in a 4404 Smalltalk image, produces a clone 
of that image suitable for execution by the 
new interpreter. The cloner converts all 
objects and oops to the representation used 
by the new system. CompUedMethods and 
MethodDictionaries are converted to the 
corresponding clone structures and new class 
definitions for these classes are substituted 
for those used in the old system. After a 
clone is created and executed with the new 
interpreter, additional class and method 
definitions are usually fried into the image. 
Most of  these changes are optimizations 
which eliminate limited object space assump- 
tions. For example, a number of the uses of 
the become:  primitive can be eliminated. 

One major change to the image is the 
manner in which existing instances of  a class 
are handled when an instance variable is 
added to or removed from the class 
definition. The standard Smalltalk-80 TM sys- 
tem attempts to "mutate" all existing 
instances of the class to use the new 
representation. This is accomplished by first 
finding all existing instances of  the old 
definition. For each one, a new instance is 
created, using the new definition, and all data 
is copied from the old instance to the new 
instance. Finally the identities of the old and 
new instances are interchanged using the 
become:  primitive. Under our new inter- 
preter, this is potentially a very time consum- 
ing operation. Finding all instances of the 
old definition requires a search of the entire 
object space. Worst yet, each become:  
operation (and one is required for each exist- 
ing instance) may require another complex 
scan of the entire object space. This situation 
is made even worse by the fact that the 
search for all instances may uncover zombie 
objects, which are eligible for garbage collec- 
tion. In addition, our experience suggests 
that class definitions are most commonly 
modified while debugging and that in such 
situations, all existing instances are often dis- 
carded immediately after changing the 
definition. In order to eliminate the overhead 
of object mutation we developed a technique 
we call lazy mutation. 
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The intent of lazy mutation is to defer 
the mutation of objects until they are actually 
used in a computation. This eliminates the 
search for instances and avoids finding zom- 
bie objects. In addition, only objects which 
are actually needed are mutated. Lazy muta- 
tion is accomplished by replacing the method 
dictionary of the old class definition with a 
dictionary which defines only the message 
doesNotUnderstand:. In addition, the 
superclass of the old class definition is set to 
nil and a reference to the new class definition 
is stored within the old definition. When a 
message is sent to such an instance of the old 
class, a response to the message will not be 
found. Hence the doesNotUnders tand:  
method will be activated. This method con- 
tains the code to mutate the instance into an 
instance of the new class. 

Performance 

The appendix lists the results of  execut- 
ing the standard Smalltalk-80 TM benchmark 
suite using 4406 Smalltalk compared to the 
results obtained with our previous system 
running on the same hardware. These results 
indicate that we were successful in achieving 
our goal of  increasing the performance of the 
interpreter. While simple operations such as 
loading variables show only minor speed 
increases (and in a few cases are actually 
slower), more complex operations such as 
object creation are much faster. The net 
effect as shown by application level bench- 
marks (such as compiling a method) is that 
the new design is 25 to 50 percent faster. 

This performance increase is readily 
apparent to a casual user poking around with 
the mouse. When the system is in such use 
the youngest region is garbage collected 
about once a second. These collections are 
seldom noticeable to the user but may be 
seen if you have a rapidly moving image on 
the screen. The basic image distributed with 
this interpreter has 33,000 objects. This 
image would be much too large to run on the 
old system. 

A large application, Views has been 
run and benchmarked on both the 4406 and 
4404 Smalltalks. For the computations ben- 
chrnarked, the new system runs better than 
three times faster than the 4404 system. The 
larger speed increases were in tests which 
calculated Hilbert matrices in rational arith- 
metic. The new system did not expand into 
large integers as soon due to the larger range 
of small integers. For these cases the speed 
of the new system was up to eight times fas- 
ter. 

To file in the Views application on the 
4406 takes about half the time that the 4404 
takes. The performance increase for this 
operation is less for two reasons. The pro- 
cess is inherently I/O bound and I/O speeds 
are about the same for both systems. How- 
ever, fileln also creates a large percentage of 
permanent objects. During the fileln process 
these objects typically must be moved from 
one region to another by the garbage collec- 
tor several times. This increases the garbage 
collector overhead. We have considered 
techniques for allocating objects that we 
know will be relatively permanent into an 
older region directly but have not found a 
way to integrate this cleanly with the image. 

The memory requirements of  the new 
system are larger. The binary objects, which 
include bytecode arrays, are the same size 
but pointer objects are twice as big. Also the 
space used by the Baker half-spaces doubles 
the amount of virtual address space required 
for an image. This can cause thrashing dur- 
ing garbage collection if the size of the image 
is the same as the total real memory. The 

rea l  memory does not have to be the same as 
the total virtual size since older regions are 
seldom collected. We have found that satis- 
factory performance on the 4406 requires 
about l~h to 2 times the amount of  real 
memory as the same image on a 4404. 
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A p p e n d i x  B e n c h m a r k  Resul t s  

Standard Smalltalk-80 benchmarks [Mcc83a] execution times in seconds. The Small Object Space 
(SOS) times are for the Tektronix 4404 Smalltalk Vl.5g interpreter. The Large Object Space (LOS) times 
are for Tektronix 4400 Large Object Space Smalltalk V2.1x. Both interpreters were run on a Tektronix 
4406 with 4 megabytes of main memory. 

T~st name SOS-4406 LOS-4406 

load an instance variable 1.369 1.207 
load 1 as a temp !.085 1.06 
load 0@0 1.086 1.062 
load i, 40 times; send == 2.053 2.107 
load nonRefcounted literal 1.143 1.102 
load literal indirect (overflow mfct) 1.421 I. ! 93 
store into an instance variable 1.99 i .093 
store ~to a temp 0.949 0.911 

add 3 + 4 1.2 1.176 
test 3 < 4 1.239 1.151 
multiply 3 * 4 1.534 1.43 
divide 3 by 4 0.183 0.176 
add 20000 + 20000 0.737 0.125 
add 80000 + 80000 0.075 0.012 
activate and return 2.001 1.687 
short branch on false 1.212 1.039 

simple whileLoop 2.863 2.89.3 
send #at: (to an array) 0.42 0.366 
send Mat:put: (to an array) 0.743 0.616 
send #at: (to a string) 0.501 0.437 
send Mat:put: (to a string) 0.632 0.518 
send #size (to a string) 0.46 0.272 
create 3@4 0.446 0.19 
execute ReadStroam next 0.768 0.594 

execute RcadWriteStream nextPut: 1.025 0.773 
send == 1.206 1.211 
send #class (to a point) O. 18 O. 172 
execute biockCopy: 0 1.987 7.339 
evaluate the block: (3+4) 0.857 0.749 
create 20 uninitialized points " 1.286 0.433 
execute =Point x 1.635 !.279 
load thisContext 3.O4 1.914 

send #basicAt: (to a set) 
send #basicAtPut: (to a set) 
3 perfoml: #+ with: 4 
replace characters in a string 
convea I to floating point 
add 3.1 plus 4. ! 
call bitBLT i0 times 
scan characters (primitive text display) 

read and write class organization 
print a class definition 
print a class hierarchy 
find all calls on #printStringRadix: 
find all implemcntors of #next 
create an inspector view 
compile dummy method 
decompile class lnputSensor 

text keyboard response using Iookahcad buffer 
text keyboard response for single keystroke 
display text 
format a bunch of text 
text replacement and rcdisplay 

0.696 0.423 
0.889 0.626 
1.052 0.841 
0.032 0.025 
O. 17 0.052 
0.218 0.061 
0.755 0.681 
0.379 0.094 

7.333 2.121 
!.776 1.421 
1.743 1.223 
8.01 5.965 
i.562 1.146 
1.957 1.134 
4.066 2.885 
2.645 1.828 

1.307 0.793 
3.82 2.345 
2.317 1.27 
1.809 1.219 
5.87 3.35 
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