
A Third Generation Smalltalk-80 TM Implementation

Patrick J. CaudUl

Allen Wirfs-Brock

Computer Research Laboratory
Tektronix Laboratories

P.O. Box 500 MS 50-662
Beaverton, Oregon 97077

Abstract

A new, high performance SmaUtalk-
80 TM implementation is described which
builds directly upon two previous implemen-
tation efforts. This implementation supports
a large object space while retaining compati-
bility with previous Smalltalk-80 TM images.
The implementation utilizes a interpreter
which incorporates a generation based gar-
bage collector and which does not have an
object table. This paper describes the design
decisions which lead to this implementation
and reports preliminary performance results.

Introduction

Tektronix Large Object Space
Smalltalk (4406 Smalltalk) is a high perfor-
mance implementation of the Smalltalk-80 TM

System for members of the Tektronix 4400
series of workstations using the Motorola
68020 processor. The major goal of this
implementation was the ability to support a
very large number of active objects.

A previous Smalltalk implementation
at Tektronix had demonstrated the feasibility
of using a microprocessor to host high-
performance Smalltalk implementations.

Permimon to copy without fee all or part of this material is ~'anted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the tide of the publication and its date appear,
and notice is siren that copying i$ by permission of the Association for
Computin8 Machinery. To copy otherwise, or to republish, requires a fee and/
or ~¢¢ific permission.

© i 986 ACM 0-89791-204-7/86/0900-0119 75¢

That implementation, following the
Smailtalk-80 TM virtual machine specification
IGOR83], was restricted to an object space of
approximately 32,000 objects. As applica-
tions developers gained experience with this
system the limited object space was found to
be the major restriction of the system.
Because of this limitation, application
developers began to think of Smalltalk as a
system which was excellent for application
prototyping but which was not suitable for
large scale applications development. 4406
Smalltalk is intended to be usable for the
development and delivery of large applica-
tions systems.

A Third Generation Design

4406 Smalltalk represents the third
major Smalltalk interpreter implementation
within Tektronix Laboratories. As such, it
benefited from experience gained from our
earlier implementations as weU as the experi-
ence of other Smalltalk developers.

The first Tektronix Smalltalk-80 TM

implementation [Mcc83] was a direct imple-
mentation of the Goldberg and Robson Vir-
tual Machine specification. It strictly
adhered to the data representations and algo-
rithms from the specification and was imple-
mented in Pascal for the Motorola 68000.
The dismal performance of this
implementation[Mcc83a] lead us to the con-
clusion that SmaIltalk-80 TM interpreters
needed to be more carefully designed to
match the capabilities of the host computer.

Smalltalk-80 is a ~radcmark of Xerox Corpora-
tion.

Septemb~ 1986 OOPSLA '86 Proceedings 119

Our ..second major implementation
[Wit83, Wir85] was for the Tektronix Mag-
nolia, an experimental 68000 based worksta-
tion. For this implementation, data structures
and representations (e.g. object representa-
tions in memory and object table layouts)
were carefully chosen to match to the capa-
bilities of the Motorola 68000. The inter-
preter itself was carefully hand-coded in
assembly language in order to minimize the
number of instructions to implement each
bytecode. Most importantly, new storage
management and garbage collection tech-
niques were developed. This implementation
was an order of magnitude faster than the
first interpreter and ultimately evolved into
Tektronix 4404 Smalltalk, the first high per-
formance Smalltalk implementatiorr for a low
cost workstation.

In addition to our own implementa-
tions, we were most strongly influenced by
the implementation efforts of David Ungar at
UC Berkeley [Ung85]. Ungar's BS II,
although exhibiting only modest perfor-
mance, demonstrated the feasiblity of imple-
menting Smalltalk without an object table in
conjunction with a generation based garbage
collection scheme.

4406 Smalltalk Design Goals

Four major goals drove the design of
the 4406 Smalltalk interpreter. These were:

1) Provide support for a large number of
objects.

2) Increase performance relative to the
existing 4404 interpreter.

3) Remove virtual machine design irregu-
larities caused by the limited object
space.

4) Preserve the basic semantics and func-
tionality of the Smalltalk-80 TM virtual
machine.

The 32,000 object limit of the previous
interpreters had become our major impedi-
ment to the implementation of serious appli-
cations using Smalltalk. Any small multiple
increase of the object space size was con-

sidered unacceptable since it was assumed
that applications would soon exceed any such
new limit. The size of the object space
should be limited only by the available pro-
cessor address space. The interpreter should
efficiently support widely varying object
space sizes. While early uses of the system
would be with relatively small applications
designed for a restricted object space, the
expectation was that new applications would
ultimately use hundreds of thousands to mil-
lions of objects.

The larger object space needed to be
achieved without reducing the speed of
Smalltalk program execution. The major
goal of the previous interpreter design had
been the achievement of execution speeds
adequate for serious development work. This
goal was achieved but even higher perfor-
mance levels were needed to support the
larger applications being considered. An
important factor contributing to the high per-
formance of the previous interpreter was its
mixed strategy approach to garbage collec-
tion. The collection strategy incorporated
special allocation zones and representations,
deferred reference counting, and mark/sweep
collection. Unfortunately, the interactions
between the various techniques were
extremely difficult to understand and debug.
A secondary goal of the new design was a
simpler garbage collection strategy which did
not sacrifice performance.

The standard Smalltalk-80 TM virtual
machine design incorporates several irregu-
larities which were apparently introduced to
reduce the total number of objects required
by the standard system. For example.
instances of class CompiledMethod contain
both object references (the literals) and
binary data (the bytecodes) even though the
object memory architecture expects only
objects which uniformly contain only object
references or only binary data. The unusual
representation was presumably choosen to
eliminate the need for separate literal and
bytecode objects for each method. The irreg-
ular CompiledMothod representation adds
complexity to the garbage collector (increas-

120 OOPSLA '86 Proceedings September 1986

ing garbage collection overhead) and requires
special primitive methods within the inter-
preter to support the representation. In addi-
lion, it is impossible to make subclasses of
CompiledMethod. A new, large object
space interpreter design should be able to
eliminate such irregularities and hence pro-
vide increased performance and functional-
Uy.

Any Sm~talk-80 TM implementation
must support a complex, pre-existing system
environment (i.e. the Smatltalk-80 TM pro-
gramming environment). Such support is
complicated by system code with dependen-
ties upon virtual machine implementation
details. For example, the existence of an
object table is implicitly assumed by any
code which uses the become: primitive with
impunity or which depends upon some order-
ing of object names. A number of the pro-
gramming aids assume that enumerating an
instances of some class or all objects in the
virtual image is a computafionally tractable
operation. While this assumption may be
Irue for a virtual image limited to 32,000
objects it is probably not role for
significantly larger object spaces. A large
object space interpreter needs to continue to
provide support for such operations in order
to support the existing system code.

Such assumptions need to be expurgated
from the Sm~ta lk code as the system
evolves towards much larger vimlal images
using the new interpreter.

Design Overview

4406 Smal]talk uses a pure bytecode
interpreter, implemented in assembly
language for the Motorola 68020 processor.
We chose an interpreter over the dynamic
translation techniques of Deutsch and Shift-
man [DES74] because we felt that the perfor-
mance advantages exhibited by dynamic
IJanslation were insufficient to justify the
increased complexity of the implementation.

Object references (Oops) are 32-bit
values which incorporate a l-bit tag field to
distinguish Smalllntegers from object
pointers. Object pointers directly encode the
current address of the target object. An
object table is not used. The size of index-
able objects is limited only by the available
address space.

A generation scavenging dedved
scheme is used for garbage collecdox~ This
differs from our previous implementations
which used a deferred reference counting col-
lector [DeB76]. As in our tnevious imple-
mentation, a volatile context stack is used to
limit the creation of context objects.

First field of object
i i

Oop of object's class

Reserved R C
for garbage IV T u n - type
collector T X used I I

i Region and age
info for garbage Number of
collector fixed fields

31 16

I

Hash Value
i H

Size (in bytes) of object
i

0

CTX - 1 if this is a context object

R M T - 1 if this object has a remote
IMexable pan :

Type - 0 normal (non-indexable)
1 byte indexable
2 word (16-bit) indexable
3 long (32-M) indexable
4 pokder indexable

Figure 1 Object Header Format

September 1986 OOPSLA '86 Proceedings 121

CompiledMethods are represented as a
composite of separate binary (bytecode) and
pointer (literal) objects. This makes Com-
piledMethods transparent to the garbage col-
lector and permits their subclassing.

Object Memory Architecture

Memory is composed of 32-bit words.
Each word containing an object pointer has
its most significant bit set and the rest of the
word contains the byte address of the object.
On the 4406, virtual memory hardware can
be set to ignore bits in the upper portion of
the address word. A small integer has its
most significant bit cleared. The rest of the
word contains a value in the range
1,073,741,823 to -1,073,741,824 in 2's com-
plement notation. The range of small
integers covers the time critical cases and no
large integer primitives were implemented.

Since there is no object table, the
header of objects has been expanded to a
three word header [Figure 1] which includes
information that had been previously stored
in the object table. This header contains a
16-bit size field which gives the size of the
object in bytes. The actual storage size of the
object is this size rounded up to a multiple of
four bytes. This allows the size field to indi-
cate directly the size of byte arrays rather
than using separate modifiers. There are two
bytes reserved to hold a copy of the informa-
tion from the class's instance specification
field. One of these bytes contains the number
of fixed fields. The maximum number of
fixed fields has been reduced to 256, which is
not considered a significant limitation since
there are no byte codes to address even that
many. The object type code has been
expanded to include the categories byte,
word, quad and pointer, but there is currently
no primitive support for quad-hyte data
objects. There is a bit to show if this object
is a context. With this information it is
unnecessary to access an object's class
object, which might cause a page fault, to
access the indexable fields of that object.

In the standard Smalltalk-80 TM system
the primitive message asOop returns an
integer value which represents the object's
position within the object table. This value is
then commonly used for hashing. In 4406
Smalltalk a sixteen bit field within the object
header is filled with a hash code, which is the
value returned by the primitive message
asOop. This is necessary since the garbage
collector may move objects changing their
object pointer value. Since this is not enough
bits to provide a unique value, the message
asObject is not implemented. There are also
sixteen bits reserved for use by the garbage
collector. These maintain, among other
things, the approximate age of the object in
the system.

Indexable objects may be broken into
two parts, a base part and a remote part
which contains the indexable fields [Figure
2]. All object pointers address the base part
which contains a pointer to the remote sec-
tion if one exists.[Kra84] With only index-
able fields stored in these remote sections of
the object, only array accessing primitives,
such as at: and at:put:, must be aware of
them. Any size object with an indexable
field may have a remote part but we gen-
erally only create an object with a remote
part if it is larger than a minimum size. The
remote indexable part makes growing an
indexable object much easier as the remote
pan may be reallocated and only the one
pointer must be changed, rather than all
pointers to the object. The remote part has
its own header which has a 32-bit size field
allowing objects as big as memory. This
overcame the 64K byte limitation imposed
by the 16-bit size field in an object. The
remote header also contains a back pointer to
the base object memory and a field for use by
the garbage collector. The remote parts are
allocated from a separate heap memory
managed with a free list.

In our first Smalltalk interpreter we
noticed that the reference counting system
used an excessive amount of processor time.
This was especially true of short lived
objects referenced from a context stack. We

122 OOPSLA '86 Proce~ings September 1986

Indexable Fields

Fixed Fields

Object Header

Normal Indexable Object

Remote Pointer

Fixed Fields

Object Header

.... f ,

Indexable Fields

Remote Header

Remote Indexable Object

Figure 2 Indexable Object Organization

overcome this problem in our second imple-
mentation by only reference counting these
objects when memory ran out, at which time
objects with zero counts were freed. Refer-
ence counting also has problems with circu-
lar garbage which require an additional
mark-sweep subsystem to periodicly clean
memory. In a virtual memory system the
free list caused a very fragmented memory
with little locality of reference, and had a
tendency to thrash. With no object table to
hold the reference counts yet another layer of
complexity would have been added. Instead
a stop-and-copy mechanism was used follow-
ing the leads of Lieberman and
Hewin[LiH83], Ungar[Ung84] and
Ballard[Ba182]. Our scheme breaks memory
down into several regions each of which is a
pair of Baker half-spaces. All new objects
are appended to the end of the active memory
in one region. When the active half-space for
a region is full, all live objects are copied to

the other half-space. After a fixed number of
copies within a region, an object is reallo-
cared to the next older region. This has the
advantages of quick ailocadon, short lived
objects are never seen by the collector, and a
high locality of reference for new objects.

When a region fills, the garbage collec-
tor copies all objects known by the inter-
prefer from it. Next, objects referred to by
active contexts are copied, then objects
referred to by objects in other regions.
Finally objects referred to by just-copied
objects are copied. In each case copying is
usually to the other half-space but could be to
the next older region. A table of older
pointers into this region is kept to determine
active objects within the region. We do this
to keep from having to scan the older regions
in their entirity. When this table is scanned,
the referenced object is copied and the
pointer is updated at the same time.

September 1986 OOPSLA '86 Proceedings 123

The system currently has seven regions.
This appears to be enough to prevent prema-
ture tenuring of objects, that is placing inter-
mediate lived objects into permanent storage.
But it is few enough that objects arc not
copied too many times before they move into
a region which is less actively collected.
This area of the interpreter may be fine tuned
as we become more familiar with the perfor-
mance of the system.

Contexts are both very transicnt and
contain references to ephemeral objects,
therefore they account for a large amount of
the activity of new objects. A lesson we
learned in the second generation system was
that by handling contexts differently we
could achieve great gains in performance. In
both that system and this one, contexts are
allocated from a push down stack. Only i f a
pointer to a context is created is the context
convened to a real object. In both systems
references from context stacks are handled
specially. In this system when a context
object is activated a note is made in a special
table. Stack references are not checked to
see i f they refer to a younger object. When a
garbage collection is about to be made, all
such activated contexts are scanned and the
appropriate references are put in the tables.
This saves the work of checking and mark-
ing references which are to be immediately
destroyed.

The garbage collector provides another
reason for having remote pans for large
objects. When a region is salvaged the
remote part does not have to be moved.
Since larger objects exhibit a tendency to
have a longer life this can amount to a large
saving. Also, a very large object could fill or
overfill a region, causing many other objects
to be prematurely aged into an older region.
I f only the base part uses space from the
region then this effect wil l be minimized.

Primitives

The primitive become: had to have
major changes to operate. In our previous
implementations, become: swapped the
addresses of the data for two objects in the

object table, exchanging the meaning of their
object pointers. This was a relatively cheap
operation. Now, with no object table, the
operation is much more difficult. We rely on
a series of stratagems to get reasonable per-
refinance out of the primitive. If the two
objects are the same size their memory
representations may be interchanged. A
large percentage of the use of become: is to
grow the indexable portion of an object. We
can do this by swapping the base parts of the
objects and forcing the indexable parts to be
remote. If this creates a small remote pan,
the garbage collector will merge the remote
part back into the base the next time the
object is copied. In the worst case, such as
adding an instance variable to an object, all
memory must be scanned and pointers to the
two objects exchanged. This can be speeded
up by using the reference information
acquired by the garbage collector to change
pointers in blder regions. In this last case the
hash codes must also be exchanged as it is a
function of the object pointer and not the
object.

The primitives relating to the number
of objects and amount of core left were
difficult to define. Since there is no object
table there is no real limit on the number of
objects, coreLeft is also difficult because of
the way in which memory is allocated and
because there may be dead objects still occu-
pying memory, We finally implemented a
new primitive which returns the memory
used and the total number of objects in the
system. This is done by scanning all
memory counting objects and is a slow
operation, oopsLeft is then answered as an
estimate from the average size of the objects
and the amount of free memory. This esti-
mate is inaccurate and also costly. The
oopsLimit and coreLimit were left unimple-
mented. The system wil l die when it runs out
of 32M of virtual memory but by that time
the trashing behavior should be really obnox-
ious.

A different problem was encountered
with somelnstance and nextlnstance. In
previous versions these were used to scan the

124 OOPSLA '86 Proceedings Septernbm 1986

object table to find all instances of a class.
Hence they implicitly assumed some per-
manent ordering of objects. No such order-
ing exists since the garbage collector may
move and reorder objects as part of its opera-
tion. A scan of memory would not have
given the same result if the garbage collector
became active between calls. In the standard
image next lnstance was only used in the
method for alllnstances. So we imple-
mented this method as a primitive which
returns an array of the pointers to all objects
within a given class. The other two messages
can be implemented using this primitive.
Since objects are not immediately collected
when they die, al l lnstanees may find some
of these zombie objects, unused but uncol-
lected, and bring them back to life.

There are no primitives implemented
for large integers. The new range of small
integers more than covers the cases for which
large integer primitives were previously
used. Since small integers are larger than the
address range of the machine, they may be
used for all indexes in array and string han-
dling.

Our hardware includes a sophisticated
floating point processor. We extended the
primitives for floating point to access some
of the functions this processor provides. The
new primitives perform trig and log functions
at a high rate of speed. The hardware also
understands small integers and the floating
point primitives will take small integer argu-
ments, greatly increasing the speed of expres-
sions like (aFloat + 1).

Compiled Method Representation

The representation of instances of class
CompiledMethod was changed, making it
consistent with the system's standard object
architecture. The original form was used to
reduce the number of objects needed to store
a method, but with no real limit on the
number of objects, the new form has several
advantages. The new class Compiled-
Method, for instance, may be subclassed. It
also simplifies the garbage collector because
there are now no objects which contain both

binary and object pointer data. A compiled
method is now represented by a composite
structure consisting of three objects, a Com-
piledMethod, a BytecodeArray, and a
LiteralArray. The root object contains four
fixed fields: a control header, a source code
reference, a reference to the BytecodeArray,
and a reference to the LiteralArray[Figure 3].

The header fields provide the control
information used by the interpreter to execute
the compiled method. Within the standard
compiled method representation used by pre-
vious interpreters, control information was
divided between a header stored as the first
literal and an optional header extension
stored as the last literal. Information needed
by the interpreter to determine how to exe-
cute a method was highly encoded and was
divided among several fields of the header
and header extension. This control informa-
tion is now completely encoded within a sin-
gle field of the new compiled method header.
This significantly reduces the complexity of
the interpreter code used to initiate execution
of a method. In addition, there are now
sufficient unused bits and encodings to con-
template extensions to the functionality of
compiled methods..

The source code field is used to locate
the source code from which the method was
compiled. It currently stores a small integer
identifying a location within the standard
Smalltalk source or changes file. Under the
old representation, this value was represented
by a 24-bit integer formed from three extra
bytecodes added to the end of each compiled
method. Because of its ad hoe nature, the old
source code reference representation did not
easily accommodate alternative mechanisms
for storing source code. With the new
representation, subclasses of Compiled-
Method may use the source code field in any
way which seems appropriate. For example,
a subclass might choose to store a string con-
taining the source code in the source code
field.

The LiteralArray holds those object
references which were stored in the pointer
part of the old representation. The first literal

September 1986 OOPSLA '86 Proceedings 125

Additional literals

First Literal
Instruction Frame

A LiteralArmy
Object Header: Pointer

indexable, no fixed fields,
may not be remote.

m

Bytec ~des

A BytecodeArray
Object Header: Byte

indexable, no fixed fields,
may not be remote.

L Source Code Reference !

Instruction Frame ---

Literal Frame

.~] Method Header t

I
. ~ " ~ J Object Header: |

r~

LCF (Large Context Flag) Method Action Codes:
o: This method can use a small context 0: Create a context and execute method
1: This method requires a large context. 1-255: Execute primitive with this number

MBZ (Must Be Zero). 256-287: Return instance variable (n-256) of receiver
Arg. Count Number of arguments this method requires. 288: Return the reciever
Temp. Count Number of method tempories 289:511: Unused o-- Invalid.

(exclusive of arguments).

Figure 3 Compiled Method Structure

126 OOPSLA '86 Pro~edings ~_~'~r~wa~r 1986

value, which in the old representation con-
tained the method header, now stores a refer-
ence to the bytecode array. This reduces the
amounting of working state information
needed by the interpreter. The BytecodeAr-
ray contains only the actual bytecodes to be
executed. It is no longer overloaded with
other information such as literals or source
code references.

The literal array could have been
represented as a pointer indexable part of the
mot object. This would have reduced a com-
piled method to a composite of two objects
instead of three. This choice was not made
since we assumed that subclasses of Com-
piledMethod would want to add additional
instance variables. Support for such sub-
classes using the two object representation
would have complicated (and reduced the
efficiency) of the bytecodes which access
literals. For this same reason, subclasses of
LiteralArray may not add any instance vari-
ables.

The Smalltalk protocol supported by
class CompiledMethod is essentially the
same as in previous versions. This is possible
since the actual data structure is hidden
within the class definition. In some cases the
implementation of the protocol differs
greatly from previous versions. For example,
special primitives are no longer needed or
provided for creating instances of Compiled-
Method or for accessing literals. In a few
instances, the protocol of CompiledMethod
did not adequately hide implementation
details. Knowledge of the source code refer-
ence technique was scattered throughout the
virtual image with explicit use of size and
at: messages to access the last three
bytecodes containing the reference. New
protocol was created for these situations and
this protocol is now supported by both 4406
Smalltalk and the older systems.

Virtual Image

The virtual image for the 4406 is a
direct derivative of the image used in our ear-
lier implementations. A new subclass of
Sys temTrace r was created which, when run

in a 4404 Smalltalk image, produces a clone
of that image suitable for execution by the
new interpreter. The cloner converts all
objects and oops to the representation used
by the new system. CompUedMethods and
MethodDictionaries are converted to the
corresponding clone structures and new class
definitions for these classes are substituted
for those used in the old system. After a
clone is created and executed with the new
interpreter, additional class and method
definitions are usually fried into the image.
Most of these changes are optimizations
which eliminate limited object space assump-
tions. For example, a number of the uses of
the become: primitive can be eliminated.

One major change to the image is the
manner in which existing instances of a class
are handled when an instance variable is
added to or removed from the class
definition. The standard Smalltalk-80 TM sys-
tem attempts to "mutate" all existing
instances of the class to use the new
representation. This is accomplished by first
finding all existing instances of the old
definition. For each one, a new instance is
created, using the new definition, and all data
is copied from the old instance to the new
instance. Finally the identities of the old and
new instances are interchanged using the
become: primitive. Under our new inter-
preter, this is potentially a very time consum-
ing operation. Finding all instances of the
old definition requires a search of the entire
object space. Worst yet, each become:
operation (and one is required for each exist-
ing instance) may require another complex
scan of the entire object space. This situation
is made even worse by the fact that the
search for all instances may uncover zombie
objects, which are eligible for garbage collec-
tion. In addition, our experience suggests
that class definitions are most commonly
modified while debugging and that in such
situations, all existing instances are often dis-
carded immediately after changing the
definition. In order to eliminate the overhead
of object mutation we developed a technique
we call lazy mutation.

September 1986 OOPSLA '86 Proceedings 127

The intent of lazy mutation is to defer
the mutation of objects until they are actually
used in a computation. This eliminates the
search for instances and avoids finding zom-
bie objects. In addition, only objects which
are actually needed are mutated. Lazy muta-
tion is accomplished by replacing the method
dictionary of the old class definition with a
dictionary which defines only the message
doesNotUnderstand:. In addition, the
superclass of the old class definition is set to
nil and a reference to the new class definition
is stored within the old definition. When a
message is sent to such an instance of the old
class, a response to the message will not be
found. Hence the doesNotUnders tand:
method will be activated. This method con-
tains the code to mutate the instance into an
instance of the new class.

Performance

The appendix lists the results of execut-
ing the standard Smalltalk-80 TM benchmark
suite using 4406 Smalltalk compared to the
results obtained with our previous system
running on the same hardware. These results
indicate that we were successful in achieving
our goal of increasing the performance of the
interpreter. While simple operations such as
loading variables show only minor speed
increases (and in a few cases are actually
slower), more complex operations such as
object creation are much faster. The net
effect as shown by application level bench-
marks (such as compiling a method) is that
the new design is 25 to 50 percent faster.

This performance increase is readily
apparent to a casual user poking around with
the mouse. When the system is in such use
the youngest region is garbage collected
about once a second. These collections are
seldom noticeable to the user but may be
seen if you have a rapidly moving image on
the screen. The basic image distributed with
this interpreter has 33,000 objects. This
image would be much too large to run on the
old system.

A large application, Views has been
run and benchmarked on both the 4406 and
4404 Smalltalks. For the computations ben-
chrnarked, the new system runs better than
three times faster than the 4404 system. The
larger speed increases were in tests which
calculated Hilbert matrices in rational arith-
metic. The new system did not expand into
large integers as soon due to the larger range
of small integers. For these cases the speed
of the new system was up to eight times fas-
ter.

To file in the Views application on the
4406 takes about half the time that the 4404
takes. The performance increase for this
operation is less for two reasons. The pro-
cess is inherently I/O bound and I/O speeds
are about the same for both systems. How-
ever, fileln also creates a large percentage of
permanent objects. During the fileln process
these objects typically must be moved from
one region to another by the garbage collec-
tor several times. This increases the garbage
collector overhead. We have considered
techniques for allocating objects that we
know will be relatively permanent into an
older region directly but have not found a
way to integrate this cleanly with the image.

The memory requirements of the new
system are larger. The binary objects, which
include bytecode arrays, are the same size
but pointer objects are twice as big. Also the
space used by the Baker half-spaces doubles
the amount of virtual address space required
for an image. This can cause thrashing dur-
ing garbage collection if the size of the image
is the same as the total real memory. The

rea l memory does not have to be the same as
the total virtual size since older regions are
seldom collected. We have found that satis-
factory performance on the 4406 requires
about l~h to 2 times the amount of real
memory as the same image on a 4404.

References

[Ba182] Ballard S. and Shirron S. "The
Design and Implementation of
VAX/Smalltalk-80" in SmaUtalk-80 : Bits o f
History, Words of Advice, G. Krasner (edi-

128 OOPSLA '86 Proceedings September 1986

tot), Addison-Wesley, Reading, MA, 1983.
pp. 127-150

[DeB76] Deutsch, L.P. and Bobrow, D.,
"An Efficient Incremental Automatic Gar-
bage Collector," Commun. ACM 13,3. Sept.
1976, pp 522-526.

IDES84] Deutseh, L.P. and Schiffman, A.
"Efficient Implementation of the Smalltalk-
80 System," 11th Annual ACM Syrup. on
Prim. of Programming Languages, January
1984, pp. 297-302.

IGOR83] Goldberg, A. and Robson, D.,
SmaUtalk-80: The Language and Its Imple-
mentation, Addison-Wesley, Reading, MA,
1983.

[Kra84] Krasner G., Ungar D. and Mal-
colm M. "About Become" Smalltalk-80
Newsletter Sept. 1984, pp 1-2

[LiH83] Lieberman, H. and Hewitt, C.
"A Real-Time Gargage Collector Based on
the Lifetimes of Objects." Commun. ACM
26,6. June 1983, pp 419-429.

[Mcc83] McCuUough, P. "Implementing
the Smalltalk-80 System: The Tektronix
Experience", in SmaUtalk-80 : Bits of History,
Words of Advice, G. Krasner (editor),
Addison-Wesley, Reading, MA, 1983. pp.
59-77.

[Mce83a] McCall, K. "The Smalltalk-80
Benchmarks", in Smalltalk-80: Bits of His-
tory, Words of Advice, G. Krasner (editor),
Addison-Wesley, Reading, MA, 1983. pp.
151-173.

lUng84] Ungar, D. "Generation Scaveng-
ing: A Non-disruptive High Performance
Storage Reclamation Algorithm," ACM
SIGSOFT/SIGPLAN Practical Programming
Environments Conference, April 1984. pp.
157-167.

[Wir83] Wirfs-Brock, A. "Design Deci-
sions for Smalltalk-80 Implementors", in
Smalltalk-80: Bits of History, Words of
Advice, G. Krasner (editor), Addison-Wesley,
Reading, MA, 1983. pp. 41-56.

[Wir85] Wirfs-Brock, A. "The Design of
a High Performance Smalltalk Implementa-
tion", Nikkei Electronics, June 3, 1985,
pp.233-245, (Japanese).

September 1986 OOPSLA '86 Proceedings 129

A p p e n d i x B e n c h m a r k Resul t s

Standard Smalltalk-80 benchmarks [Mcc83a] execution times in seconds. The Small Object Space
(SOS) times are for the Tektronix 4404 Smalltalk Vl.5g interpreter. The Large Object Space (LOS) times
are for Tektronix 4400 Large Object Space Smalltalk V2.1x. Both interpreters were run on a Tektronix
4406 with 4 megabytes of main memory.

T~st name SOS-4406 LOS-4406

load an instance variable 1.369 1.207
load 1 as a temp !.085 1.06
load 0@0 1.086 1.062
load i, 40 times; send == 2.053 2.107
load nonRefcounted literal 1.143 1.102
load literal indirect (overflow mfct) 1.421 I. ! 93
store into an instance variable 1.99 i .093
store ~to a temp 0.949 0.911

add 3 + 4 1.2 1.176
test 3 < 4 1.239 1.151
multiply 3 * 4 1.534 1.43
divide 3 by 4 0.183 0.176
add 20000 + 20000 0.737 0.125
add 80000 + 80000 0.075 0.012
activate and return 2.001 1.687
short branch on false 1.212 1.039

simple whileLoop 2.863 2.89.3
send #at: (to an array) 0.42 0.366
send Mat:put: (to an array) 0.743 0.616
send #at: (to a string) 0.501 0.437
send Mat:put: (to a string) 0.632 0.518
send #size (to a string) 0.46 0.272
create 3@4 0.446 0.19
execute ReadStroam next 0.768 0.594

execute RcadWriteStream nextPut: 1.025 0.773
send == 1.206 1.211
send #class (to a point) O. 18 O. 172
execute biockCopy: 0 1.987 7.339
evaluate the block: (3+4) 0.857 0.749
create 20 uninitialized points " 1.286 0.433
execute =Point x 1.635 !.279
load thisContext 3.O4 1.914

send #basicAt: (to a set)
send #basicAtPut: (to a set)
3 perfoml: #+ with: 4
replace characters in a string
convea I to floating point
add 3.1 plus 4. !
call bitBLT i0 times
scan characters (primitive text display)

read and write class organization
print a class definition
print a class hierarchy
find all calls on #printStringRadix:
find all implemcntors of #next
create an inspector view
compile dummy method
decompile class lnputSensor

text keyboard response using Iookahcad buffer
text keyboard response for single keystroke
display text
format a bunch of text
text replacement and rcdisplay

0.696 0.423
0.889 0.626
1.052 0.841
0.032 0.025
O. 17 0.052
0.218 0.061
0.755 0.681
0.379 0.094

7.333 2.121
!.776 1.421
1.743 1.223
8.01 5.965
i.562 1.146
1.957 1.134
4.066 2.885
2.645 1.828

1.307 0.793
3.82 2.345
2.317 1.27
1.809 1.219
5.87 3.35

130 OOPSLA '86 Proceedings September 1986

