Storage Management in the Tektronix 32-Bit Smalltalk

Pat Caudill

Computer Research Laboratory
Tektronix, Inc.

ABSTRACT

This describes the planned storage management of the new Smalltalk Interpreter.
This system uses no object tables but addresses objects directly. It copies refer-
enced data to a new memory area when an area fills up. The age of the objects is
used to determine the area they are to be stored in, with newer object areas being
scavenged more often than older object areas. Very large objects are allocated
separately and are addressed indirectly.

September 24, 1985

Storage Management in the Tektronix 32-Bit Smalltalk

Pat Caudill

Computer Research Laboratory
Tektronix, Inc.

Overview

This document is part of a preliminary design for the storage management functions in the
32-Bit Smalltalk. Itis designed to supplement the pseudo-code for the storage management func-
tions.

The large numbers of objects available in a 32-bit object number system make a large
object table unwieldy. Also in a virtual memory environment there is considerable thrashing due
to indirect references and especially in scanning the free list for new objects. Because of these
problems the new interpreter will have its OOPs directly address objects by their virtual
addresses.

Smalltalk uses a reference countlng scheme to determme when objects could be disposed of.
This caused a high overhead at execution time. Several modifications were made which brought
this cost down, at the expense of code complexity. It was decide to forego the use of reference
counts in this version. Instead mark/sweep like collections of memory would be used. By only
sweeping those sections of memory which were likely to have large percentages of garbage the
cost could be kept in line.

Experience with the current Smalltalk system has shown that most objects are very small
and have lifetimes of only a few bytecodes. A large percentage of the loads and stores are in
these new objects. When these objects are allocated from a free list they are scattered across the
virtual address space which causes "thrashing". Searching the free list also pages memory at a
high rate. The current Smalltalk allocates objects in a 32K "nursery", to increase locality of
memory references. When the nursery is full objects with non-zero reference counts are moved
to normal storage. Tests showed that over 98% of the objects were never moved from this nur-
sery. This suggested that a memory management scheme which depended on the age of the
objects would give better preformance.

Grades

The scheme proposed is to break the memory up into sections. Each section would hold
hold objects which have been allocated for about the same amount of time. I have called these
sections "Grades" after the "Nursery" they originated from. Objects are always allocated in the
first grade. As this grade fills objects which survive slowly graduate to higher grades.

This keeps objects which were created together close together in memory. In particular it
keep the very new objects isolated in one memory area which may be locked into real memory.
When a grade runs out of memory only it is scavenged for live objects. Since higher grades will
fill only as those below overflow into it, the lower grades will be garbaged collected most fre-
quently. This allows the system to move and compact the most active objects without worrying
about the many less used objects. It also compacts the used objects into a smaller amount of

virtual memory giving a greater locality of reference.

There are two memory spaces (Baker spaces)associated with each grade. The active space
contains the objects currently associated with this grade. New objects placed in this grade are
allocated from this space. When a grade is marked for compaction, the other space becomes
important. The empty space is a block of memory with nothing in it. At scavenging time most
live objects from the active space are copied into the empty space. Then the roles of the active
and empty spaces are reversed. There is actually no need for the empty space as the memory
could be allocated at the beginning of the garbage collection and the old active space freed at the
end, but this was felt to be too much overhead.

For each object a count of the number of collection cycles in the current grade is main-
tained. When a critical age (set for each grade) is reached the object is not copied to the grades
empty space. Instead it is promoted to the next grades active space, and its age is reset to zero.

Spaces

Each space has a discripter holding pointers to various portions of the spaces memory.
There is a pointer to the bottom and top of the space to reset it and an end pointer and an alarm
pointer. The end pointer points to the first nonused memory in the space. The alarm pointer is
used to signal when the space is nearly full.

The memory in each space is used from both ends toward the middle. The end pointer
works up from the bottom and is the address of the next object to be allocated in this space. The
end is then incremented by the size of the object. When it passes the alarm pointer the grade is
marked for garbage collection. There is sufficient memory for several small objects to be allo-
cated in the space above the alarm point. This allows all garbage collections to occur between
bytecode allowing some simplification in those bytecodes which allocate new objects. All the
objects are allocated in a dense hunk at the bottom of the space. Since there is no need to search
a free list locality of reference is preserved.

The upper portion of the space is used to hold the remembered set for this grade. This set
grows down pushing the alarm point before it. More discussion of the remembered set is in sec-
tion 7 Efficiency improvements.

Big Objects

Large objects are handled differently than normal objects. Larger objects tend to have a
longer lifetime than small objects. This would mean that they would be copied more and would
be more data to copy. They would also fill the memory space for a grade causing premature pro-
motion of other objects. These objects are often the targets of the "becomes:" operation. Since
these objects can only be addressed through indexing operations only selected bytecodes will be
affected by treating them differently.

The large objects are split into a base section and the indexed portion. The base portion is a
normal object. All of the fixed fields of the object are allocated with the base portion. If the
indexed portion is larger than a specified size then it is allocated separately from a heap and
addressed indirectly through the base portion otherwise it it allocated as an extension of the base
object.

Objects which have the separated indexable fields are marked as "indirect" objects. They
have a field which points to a descripter in the Big Object Table. This descripter gives the size of
the indexable portion, it’s address, and a back pointer to the base portion. The indexable portion
is allocated from a separate heap and is never moved.

Scavenging

When a memory space is filled it signals that it’s grade is to be scavenged. This consists of
copying all referenced objects from that space and marking it empty. The objects are copied into
two spaces. First, the empty space for this grade for objects which have been in this grade for
less than the required number of scavenges. The other is the active space for next grade, for those
objects which are to be graduated. For the maximum grade, these are the same. The program
must check that the graduate space has not overflowed before moving a new object in. If it has, it
must be marked for collection and the object "held back" for another collection. There will
always be enough room for the objects in the empty space.

Where do we find the objects which are referred to from outside? There are four places.
The Interpreter references some objects this includes the current method, the current context, all
the semaphores associated with outside events (e.g. the keyboard or mouse) and miscellaneous
others. The garbage collector must know about these (which are fixed) and handle them as spe-
cial cases. The context stack is a prime source of references to objects so it must be scanned and
all referenced objects copied. All objects in younger and older grades must be scanned and any
they refer to in the target grade must be moved.

After all the objects which are referenced outside of the grade are copied, the transitive clo-
sure of copied objects is taken. This is done by scanning the copied objects and copying any they
refer to. The locality of reference for the new space may be improved by calculating the transi-
tive closure at intervals rather than at the end of the collection.

As each object is moved it’s new address is stored in the old object and a bit is set to show
this object has been forwarded. When an object is considered for moving the forwarding bit is
tested and the object is only copied once. The forwarding pointer camrbe used to update pointers
to the object. 15

Efficiency Improvements

There are several things that can be done to speed up this process. Since most of the gar-
bage collections are of the lower grades, if we can avoid scanning the complete upper grades this
would save a lot of time. Also it is thought that most references are from newer to older objects.
By keeping track of references from older objects to younger objects we can avoid scanning the
objects in older grades. This will reduce the bulk of our scanning. This remembered set is kept
in the grade of the referenced object. Each remembered element contains the object which refer-
ences an element in this grade, and the pointer which is the actual reference. Also as a check the
object which is referenced is also kept. This allows us to determine if the reference has been over
written.

The remembered sets are stored at the top of the active space and push the alarm point down
before them. If they cause the space to overflow they are first compacted, and then if that doesn’t
work the space is marked for compaction.

A large percentage of the stores are to the current context. If the remembering of stores to
contexts could be deferred then all the opcodes which store to contexts would not have this over-
head. This would be a big savings since most contexts are on the stack which is scanned anyway.
This can be done by remembering all contexts which are activated and which are real objects.
When a scavenge is made the contexts on this list are scanned and any objects they refer to in
younger grades are remembered. The savings can be very large as references which have been
stored over or poped off of a stack are not remembered. Note that contexts in grade 1 do not have
to be scanned.

L\"""“

Updating

After objects are moved, all references to them must be updated. This is typically done as
the references are traced. There are two groups of objects which must be updated.

The remembered sets for younger grades must be scanned for elements from the scavenged
grade. When these are found the remembered set pointers are updated using the forwarding
pointer. Some cleverness must be used with indirect objects as the pointer may or may not move
when the object does.

The other set which must be scanned is the big object table. All references to base objects
in this grade must be updated by using the forwarding pointer. If the base object was not for-
warded this object is no longer referenced and the BOT entry and data area can be freed.

Code

The code which follows is the proposed memory manager written in a pseudo code like C.
The code includes some English statements for things which do not have C equivalents. The size
of an object is not consistent. It will probably be in bytes in the final code but often appears as
the number OOPs in this code. The use is not consistent. A lot of optimization will also take
place such as assigning appropriate variables to registers and expanding in place routines used
only in one place.

[TABLE OF CONTENTS]

File —> Function Line
genr.c -> START 1
genr.c -> salvageMemory 77
genr.c -> activateContext 124
genr.c -> updateFromContex 146
genr.c -> addref 190
genr.c -> compactGrade 232
genr.c -> scavengelnterpOb 318
genr.c -> scavengeContextS 335
genr.c -> scavengeRemember 358
genr.c -> copyRememberedOb 379
genr.c -> scavengeThisSpac 4086
genr.c -> scavengeReferent 428
genr.c -> copyAndForuardOb 498
genr.c -> updateRemembered cccosecccces 613
genr.c -> updateBot esesscsesese 18 647

[
[
[
[

Printed: 89/24/85 at 18:85 AM |

genr.c <- .

Page 1

genr.c

+

WONNUTIHFWN -

1>

2>

2<
1<

1>

1<

1>

1<

1>

1<

1>

1<

typedef struct obj
{

int objsize 3
int objgrade ;
int ob jage 3
int objhash
int objfixed ;
boolean isForuarded ;
boolean isContext :
boolean isPointers
boolean islndirect 3
union
struct obj %*class

struct obj

struct obj xobjcontents(] ;
} object ;

typedef struct wﬁ_
{

object xkbotref
object xbotdat
botsize ;

int
} bote

typedef struct
{

word_t
word_t
word_t
word_t

xspcfirst

%

graurt

*spcend

%*spcmax

%*spclast

} space ;

typedef struct
{

object xremobj
object xkremptr
object xremtgt
} remembered ;

tgpe?ef struct

space x*active

space xinactive

remembered xRemembered ;

int
} grade

oldAge

Bote

.
’

xforwardingPointer

/% big object table entrys

/* back pointer to object
/% pointer to memory space
/% memory size

/%

/%
/%

pote ¥ Botral

The first byte of the space.
The last used word.
The overflouw point.
The last of the allocation.

x/
x/

x/
x/

x/
x/
x/
x/

The object which is remembered x/
The doun pointer in the object. x/
The target of the remembered pointer x/

pointer to space holding objects x/
pointer to space available */
pointer to remembered set x/
cycles until objects are promoted x/

el $

¥ pot

/* f"'h +eN to

In T“H'

M Uik o wext 1A Ih® bepde ¢/

5 GV»J"/

E Printed: 99724785 at 18:05 AM | genr.c <- . Page 2 %
[genr.c .]
[N]
58
51 #idefine BOToffset @
82 #define BOTpnt(exp) ((bote %) {(exp)->contents[BOToffsetl})
683 #define CSPoffset 3
S4 #define CSPval (exp) ((int) ((exp)->contents[CSPoffsetl))
sS extern object »kCSP
gg extern object *ContextStackl[] ;
58 #define MAXGRADE 16
59 #define SMALLSIZE 1024
g? #define REMSIZE 188
gg grade school {(MAXGRADE] ;
64 int wmustCompact /% need to scavenge this grade %/
gg int maxAge : /% old age for current grade x/
67 remembered *RememberedSet; /% remembered set for current grade x/
68 space xtoSpace 3 /% space to copy to. */
69 object xtoSpaceEnd ; /% pointer to unused to space %/
70 space - %xgradSpace 3 /% space to age into. */
;% cbject *gradSpaceEnd /% pointer to unused grad space x/

73 #define MAXACT 50

74 #define LASTACT &(ActivatedContexts[MAXACT])

75 object xActivatedContexts[MAXACT) ;

76 0x object xknextActContext = { ActivatedContexts } ;

E Printed: 838/24/85 at 10:65 AM | genr.c <- salvageMemory Page 3 %
[genr.c]
L ___salvagelemory]

78 /%Ex/

79 /% salvageMemory x/

80 /% This routine is called when the memory */

81 /% allocator notices it is nearly out of space =x/

82 /% in the allocation area {(grade-8 active). x/

83 /% 1t bungles around and copies objects until %/

84 /% either it has eliminated some, it has */

85 /% graduated them to an unfilled grade, or =/

86 /% uorst case it gets more memory in the oldest %/

87 /% grade. x/

88

89 salvageMemory()

% 1> {

g% int compacting, reallocmax

93 if (mustCompact < 8) mustCompact = 9 ;

94 updateFromContexts() ;

g5 real locmax = FALSE 3

gg ’ for g compacting = @ ; compacting < mustCompact ; ++compacting)

>

a8 compactGrade (compacting) ;

99 2« }

108 while (mustCompact >= 8)

101 2> {

162 compacting = mustCompact ;

103 mustCompact -= 1 3

104 compactGrade (compacting) ;

165 if ((mustCompact == MAXGRADE) &8

186 (compacting == MAXGRABGE)) /% oldest filled up %/
107 3> {

108 signal (LCWMEMORY)

109 realloc (school [MAXGRADE]. inactive,

116 schoo | [MAXGRADE] . active->spclast -

111 school [MAXGRADE) . active->spcfirst +

112 schoo! [MAXGRADE) .active->spclast ~

113 schoo| [MAXGRADE) . active->spcend)

114 reallocmax = TRUE ;

115 3¢ }

116 2< }

117 if (reallocmax)

118 realloc (school [MAXGRABE]. inactive,

119 schoo! [MAXGRADE] .active->spclast -

1206 schoo! [MAXGRADE) .active->spcfirst) ;
2

e

[Printed: 89724785 at 18:05 AN | genr.c <- activateContext Page &4 }
L +
genr.c]
i xt]
/%Ex/
/x activateContext x/

1>

1<

/% This routine is called to save a context x/
/% uhich is a real object when it is used as a %/
/% real context. References from these are not x/
/% marked as being from older to younger unless %/
/% a scavenge comes up. This saves keeping trackx/
/% of references which may (probably) uill be %/

/% covered up. It does not save contexts in x/
/% grade @ since they can’t refer to younger x/
/% objects. */

activateContext (contextOop)
?bject *contextOop 3

if (contextOop->objgrade == 8) return :

x(nextActContext++) = contextOop

if (nextActContext >= LASTACT) /t table full so flush it. x/
updateFromContexts() ;

{ Printed: 09/24/85 at 18:85 AM | genr.c <- updateFromContexts Page 5 %

(genr.c]
]

147 /*Ex/

148 /% updateFromContexts x/

1439 /% This routine runs through a list of the */

156 /% contexts uhich are real objects and uhich x/

151 /% have been used since the last update and x/

152 /% inspects them for references to younger */

153 /% objects. By doing this at the last mcment */

154 /% ue dont have to check stores into contexts %/

155 /% (khich are in the majority) at all. This is %/

156 /% a uin since we dont have to do any checking %/

157 /% for contexts on the context stack or in */

158 /% grade 8. Also we dont have to worry about x/

159 /% references which have been stored over. t 74

160 /% The routine is a simple doublely nested */

161 /% loop over contexts and their pointers */

162 /% looking for pointers to younger objects. */

163 /% Only active data in the stack part of the x/

164 /% context is actually locked at. The other */

%gg /% data is assumed not to change. =/

167 updateFromContexts ()

168 1> {

169 int contextGrade, i 3

i;? object xcontext ;

%;%) for (context = ActivatedContexts ; context < nextActContext ; ++context)

>

174 contextGrade = context->objgrade s

175 addref (context, &context->class)

176 for (i =« 6 3 i < CSPval{context) ; ++i)

177 3> {

178 addref(context, &(context->contents(il)) ;

179 3¢ }

188 2¢< }

181 nextActContext = ActivatedContexts ;

182 if { current context == real object)

183 2> {

184 activateContext(current context) 3

185 if (current context == block context)

186 activateContext{current context -> contentsiSl} ;

187 2< }

188 1< }

E Printed: 89/24/85 at 18:85 AM | genr.c <- compactGrade Page 7]
+]

[genr.c]

L compactGrade 1

233 /5Ex/

234 /% compactGrade */

235 /% This routine moves all the currently x/

236 /% active objects in grade to a new space. x/

237 /% it then makes the currentl¥ active space the x/

238 /% empty one for this grade. This has the effectx/

239 /% of throuwing auay all the unused objects. */

240 /% The routine first finds the spaces to which x/

241 /% objects are to be copied. This uill depend onx/

242 /% uhether this is the oldest grade. [t then */

243 /% copies all stuff refered to from the contextx/

244 /% stack. Next it copies all the stuff refered x/

245 /% to by older objects. Then it loops alternatiyx/

246 /% copying all objects refered to by the stuff x/

247 /% moved to the “"to" and “grad” spaces. (if x/

248 /% these are the same this is half a loop.) */

249 /% Finally it updates all pointers in younger %/

250 /% objects that refered to objects in this x/

251 /% grade. Oh Yes, It suaps the active and empty */

ggg /% spaces for this grade. */

254 compactGrade (grade)

255 int grade ;

256 1> {

257 grade %xroom 3

258 int i

259

268 room = &school [gradel 3

261 if (room->active->spcend < room->active->spcmax) return 3

%gg RememberedSet = room->Remembered ;

264 toSpace = room->empty ;

265 room->Remembered = toSpace->spclast s

266 room->Remembered->remobj = /x mark end of */

267 room->Remembered->remptr = /% remembered set x/

268 room->Remembered->remtgt = 8 ;

269 toSpace->spcmax = toSpace->spclast - SxSMALLSIZE

270 if (grade == MAXGRADE)

271 2> {

272 gradSpace = toSpace 3

273 2< }

274 else

275 2> {

276 gradSpace = school [grade+l).active 3

277 2< }

278 maxAge = room->o0ldAge ;

279 toSpaceEnd = toSpace->spcend 3 /% mark start of where x/

ggg gradSpaceEnd = gradSpace->spcend 3 /% copied into. */

282 scavengelnterpOb jecta(grade) ; /% move misc. obj. */

283 scavengeSpaceStartingAt (grade, toSpace, toSpaceEnd) ;

284 toSpaceEnd = toSpace->spcend ;

285 scavengeRememberedOb jects (grade, RememberedSet) ;

286 toSpaceEnd = toSpace->spcend

287 scavengeContextStackOb jects(grade)

288 scavengeSpaceStartingAt(grade, toSpace, toSpaceEnd) ;

289 for (i = grade-1 s i >= 8 3; --i)

298 2> {

291 scavengeSpaceStartingAt(grade, school [il.active,

292 school [il.active->spcend) 3

293 scavengeSpaceStartingAt (grade, toSpace, toSpaceEnd) ;

294 toSpaceEnd = toSpace->spcend

295 2« }

236 2> do |

297 scavengeSpaceStartingAt(grade, toSpace, toSpaceEnd) ;

298 toSpaceEnd = toSpace->spcend

299 if (gradSpace != toSpace)

308 3> {

301 scavengeSpaceStartingAt{grade, gradSpace, gradSpaceEnd) ;

E Printed: 89/24/85 at 18:85 AM | genr.c <- compactGrade Page 8 ;

[genr.c]
]

302 ?radSpaceEnd = gradSpace->spcend 3

303 3«

ggg 2< } while (toSpaceEnd != toSpace->spcend) 3

386 updateBot (grade) ;

307 for (i = grade-1 3 | >= 8 ;3 —-i)

308 2> {

309 updateRemembered (school [i]) .Remembered } 3

310 2< }

311

312 room->active->spcend = room->active->spcfirst ;

313 room->empty = room->active ;

314 room->active = toSpace 3

315 return 3

316 1< }

E Printed: 89/24/85 at 18:85 AM | genr.c <- scavengelnterpObjects Page 9

1
+

(genr.c

319 /%Ex/

328 /% scavengelnterpObjects x/
321 /% This routine checks any object the interpreter *x/
322 /% knows about and scavenges them as necessary. */
323 /% this includes the display bitmap, knoun cbjects like %/
324 /% nil, true, ..., active semaphores, and cbjects in x/
325 /% registers. */
326

327 scavengelnterpObjects{grade}

328 int grade

329 1> {

338

gg% /% check any interpreter saved values here %/

333 1< }

[

336
337

E Printed: 09/24/85 at 18:85 AM | genr.c <- scavengeContextStackObjePage 18]
+]
genr.c]
n n]
/5Ex/
/% scavengeContextStackOb jects x/
/% This routine scans the context stack and copies x/

338
339
340
341
342
343

1>

2>

3>

3<
1<

/% any object from the target grade which is referenced %/
/% to the correct receiving space. The context stack */
/% reference is updated. */

scavengeContextStackOb jects (grade)
int grade 3

cbject xxcip ;
for g cip = CSP ; cip > ContextStack ; --cip }
if ((xoxcip)->objgrade == grade)

copyAndForuardOb ject (xcip) ;
?cip = %kcip->foruwardingPointer 3

E Printed: 89/24/85 at 10:65 AM | genr.c <- scavengeRememberedUb jectPage 11 %

[genr.c]
]

359 /%Ex/

360 /% scavengeRememberedOb jects x/

361 /% This routine scans all the objects in a remembered */

362 /% set and copys any in the specified grade. It also */

363 /% updates the references to those objects. [t checks %/

364 /% the target to see that it hasn’t already been moved %/

365 /% and hasnt been superseeded. The end of the rememberedx/

ggg /% set is marked by a zero entry. x/

368 scavengeRememberedOb jects(memorys)

369 remembered %kmemorys ;

378 1> {

371 remembered *rip 3

372

373 for { rip = memorys ; %rip 3 +rip }

374 2> {

375 copyRememberedOb ject(rip) ;

376 2< }

377 1< }

':: Printed: 89724785 at 10:85 AM | genr.c <- copuyRememberedObjects Page 12

(genr.c

388 /*Ex/

381 /% copyRememberealo ject */
382 /% This routine copys an object which is in a */
383 /% remembered set to the tospace or gradSpace as approp.x/
384 /% 1t doesn’t copy an object if it has already been */
385 /% moved or if the reference to it has been changed. */
386 /% [t doesnt update the remembered set for the neuw */
387 /% space since that should happen uhen that space is */
388 /% scaned later. */
389

390 copuRememberedOb ject (remref)

391 remembered *xremref ;

392 1> {

333 object xreference ;

394

ggg reference = x(remref->remptr)

397 if (islnt(xreference)) return

398 if (xreference->isForuarded) return ;

zgg if (remref->remtgt !s reference) return ;

401 copyAndForuardObject {reference) ;

402 return ;

403 1< }

404

gen

E Printed: 09/24/85 at 10:085 ANl | genr.c <- scavengelhisSpaceStartinPage 13 %
r.c N]
v i tartingAt]
/%Ex/
/ scavengeThisSpaceStartingAt */

1>

2>

2<
1<

x

/% This routine does a scan of the objects that have x/
/% been moved starting at currentObject. It copies any x/
/% un-copied objects from this grade that they refer to.x/

scavengeSpaceStar tingAt (grade, theSpace, currentObject)
int grade 3
space xtheSpace ;
?bject xcurrentObject ;

for(3
currentObject < theSpace->spcend 3
currentObject += ((currentObject->objsize + 3) & ~3))

?cavengeReferentst(grade. currentObject) 3

(

E Printed: 089/24/85 at 18:85 AM | genr.c <- scavengeReferentsOf Page 14 }
genr.c)]
f]
/%Ex/
/% scavengeReferentsOf */
/% This routine scans an object and promotes any */
/% objects at which it points that are in grade “"grade" x/
/% 1t aluays copies the class, then if the object is */
/% not pointers it quits. Otheruise it copies all stuff x/
/% pointed in the contents of the object to the end or %/
/% for contexts through the stack pointer. x/
scavengeReferentsOf (grade, anObject)
int grade 3
object xan0bject ;
1> {
cbject xxstart ;
object wxkend 3
if (an0bject->objsize == 1)} return ;
) if ({anﬂbject->class->objgrade == grade)
>
copyAndForuardlb ject (anOb ject->class) 3
an0Ob ject->class = an0Object->class->foruardingPointer 3
. fddref(anﬂbject. 8(an0bject->class) ;
<
if (!anObject->isPointers) return ;
start = 8an0Ob ject->contents(l]
) if ({anﬁbject->is€ontext)
>
9 ?nd = &{an0bject->contents [CSPval (an0bject}])
<
) else(if (anObject->islndirect)
>
) ?nd = 8an0bject->contents[anObject->objsize-1] ;
<
else
2> {
) fnd = &an0bject->contents[anObject->objsizel ;
<
while (start <= end)
2> {
3 if (2*start)->objgrada == grade)
>
copyAndForuardOb ject ((xstart)) ;
xstart = (xstart)->foruardingPointer ;
addref (anObject, start)
3< }
2¢< }
2 if ((anObject->islndirect }
>
start = BOTpnt(anObject) ->botdat s
2 fnd = gtart + (BOTpnt(anObject)->botsize } ;
<
white (start <= end)
2> {
3 if (i*start)->ob]grade == grade)
>
copyAndForuardOb ject ((kstart)) s
xstart = (xstart)->foruardingPointer ;
addref {an0b ject, start) ;
3< }
2< }
return ;
1< }

[
[
[
[

Page 6

Printed: 89/24/85 at 18:85 AM | genr.c <- addref

genr.c
addref

181 /xEx/

192 /% addref

193 /% This routine ciizcxs the reference at refptrx/

184 /% in object objpii fu waing a pointer from

195 /% older to youngs objacia, If it is then the %/

196 /% reference (and iia «uj=ct) are saved in the x/

197 /% remembered sat for tie grade of the pointee %/

1398 /* object. The target onject is also saved for

188 /% checking that the value has not been replacedx/

208 /% 1f the memory space overflows then a garbage %/

%g% /% collection is signaled. /

2083 #define addref(obj, ref) if ((obj)->objgrade > (x(ref))->objgrade) \

204 addrefS(obj, ref)

2085 addrefS(objptr, refptr)

286 object xobjptr ; /% object to be remembered x/

287 object xkrefptr ; /% pointer in object pointing back x/

208 1> {

283 grade xroom ; /% room containing pointee object x/

210 object xtarget ; /% pointee object. x/

211 remembered xprset ; /% entry for remembering in x/

%ig space *daspace ; /% the space which contains the target. %/

214 target = xrefptr ;

215 room = &school [target->objgrade] ;

216 prset = room->Remembered -= sizeof (remembered) ;

217 daspace = room->active ;

218 1)

218 prset->remobj = objptr ; = emé

228 prset->remptr = refptr ; Anéf”‘e' $ t

221 prset->remtgt = target ; peEND 4 Love *

222 ’g (Jng',p(_a 24 ' ?(ﬁ(n 7 ;

223 daspace->spcmax -= sizeof(remembered)_}____———“ A = co,qfﬁ’ Lﬁ‘f)/

ggg) if ({daspace—>spcend > daspace->spcmax $ >?ﬂ“,¢\«f"‘ e ’c J
> oM 'S &)

226 mustCompact = target->objgrade ; e ‘,“\\,ﬂl 9 oA mn\\g\%f('

227 signal (CompactMemory) ; b Ren o 5

228 2< } (o Qe mer! bert

223 return ; i

238 1< } ® oy T

231 gpem

|3

