
Storage Management in the Tektronix 32-Bit Smalltalk
Pa t Caud i l l

Computer Research Laboratoiy
Tektronix, Inc.

A B S T R A C T

This describes the planned storage management of the new Smalltalk Interpreter.
This system uses no object tables but addresses objects directly. It copies refer
enced data to a new memory area when an area fills up. The age of the objects is
used to determine the area ̂ ey are to be stored in, with newer object areas being
scavenged more often than older object areas. Very large objects are allocated
separately and are addressed indirectly.

September 24, 1985

/

Storage Management in the Tektronix 32-Bit Smalltalk

P a t C a u d i l l

Computer Research Laboratory
Tektronix, Inc.

O v e r v i e w

This document is part of a preliminary design for the storage management functions in the
32-Bit Smalltalk. It is designed to supplement the pseudo-code for the storage management func
t i o n s .

The large numbers of objects available in a 32-bit object number system make a large
object table unwieldy. Also in a virtual memory environment there is considerable thrashing due
to indirect references and especially in scanning the free list for new objects. Because of these
problems the new interpreter will have its OOPs directly address objects by their virtual
a d d r e s s e s .

Smalltalk uses a reference counting scheme to determine when objects could be disposed of.
This caused a high overhead at execution time. Several modifications were made which brought
this cost down, at the expense of code complexity. It was decide to forego the use of reference
counts in this version. Instead mark/sweep like collections of memory would be used. By only
sweeping those sections of memory which were likely to have large percentages of garbage the
cost could be kept in line.

Experience with the current Smalltalk system has shown that most objects are very small
and have lifetimes of only a few bytecodes. A large percentage of the loads and stores are in
these new objects. When these objects are allocated from a free list they are scattered across the
virtual address space which causes "thrashing". Searching the free list also pages memory at a
high rate. The current Smalltalk allocates objects in a 32K "nursery", to increase locality of
memory references. When the nursery is full objects with non-zero reference counts are moved
to normal storage. Tests showed that over 98% of the objects were never moved from this nur
sery. This suggested that a memory management scheme which depended on the age of the
objects would give better preformance.

The scheme proposed is to break the memory up into sections. Each section would hold
hold objects which have been allocated for about the same amount of time. I have called these
sections "Grades" after the "Nursery" they originated from. Objects are always allocated in the
first grade. As this grade fills objects which survive slowly graduate to higher grades.

This keeps objects which were created together close together in memory. In particular it
keep the very new objects isolated in one memory area which may be locked into real memory.
When a grade runs out of memory only it is scavenged for live objects. Since higher grades will
fill only as those below overflow into it, the lower grades will be garbaged collected most fre
quently. This allows the system to move and compact the most active objects without worrying
about the many less used objects. It also compacts the used objects into a smaller amount of

G r a d e s

- 2 -

virtual memory giving a greater locality of reference.

There are two memory spaces (Baker spaces)associated with each grade. The active space
contains the objects currently associated with this grade. New objects placed in this grade are
allocated from this space. When a grade is marked for compaction, the other space becomes
important. The empty space is a block of memory with nothing in it. At scavenging time most
live objects from the active space are copied into the empty space. Then the roles of the active
and empty spaces are reversed. There is actually no need for the empty space as the memory
could be allocated at the beginning of the garbage collection and the old active space freed at the
end, but this was felt to be too much overhead.

For each object a count of the number of collection cycles in the current grade is main
tained. When a critical age (set for each grade) is reached the object is not copied to the grades
empty space. Instead it is promoted to the next grades active space, and its age is reset to zero.

Spaces
Each space has a discripter holding pointers to various portions of the spaces memory.

There is a pointer to the bottom and top of the space to reset it and an end pointer and an alarm
pointer. The end pointer points to the first nonused memory in the space. The alarm pointer is
used to signal when the space is nearly full.

The memory in each space is used from both ends toward the middle. The end pointer
works up from the bottom and is the address of the next object to be allocated in tiiis space. The
end is then incremented by the size of the object. When it passes the alarm pointer flie grade is
marked for garbage collection. There is sufficient memory for several small objects to be allo
cated in the space above the alarm point. This allows all garbage collections to occur between
bytecode allowing some simplification in those bytecodes which allocate new objects. All the
objects are allocated in a dense hunk at the bottom of the space. Since there is no need to search
a free list locality of reference is preserved.

The upper portion of the space is used to hold the remembered set for this grade. This set
grows down pushing tiie alarm point before it. More discussion of the remembered set is in sec
tion 7 Efficiency improvements.

Big Objects

Large objects are handled differently than normal objects. Larger objects tend to have a
longer lifetime than small objects. This would mean that they would be copied more and would
be more data to copy. They would also fill the memory space for a grade causing premature pro
motion of other objects. These objects are often the targets of the "becomes:" operation. Since
these objects can only be addressed through indexing operations only selected bytecodes will be
affected by treating them differently.

The large objects are split into a base section and the indexed portion. The base portion is a
normal object. All of the fixed fields of the object are allocated with the base portion. If the
indexed portion is larger than a specified size then it is allocated separately from a heap and
addressed indirecdy through the base portion otherwise it it allocated as an extension of the base
object.

Objects which have the separated indexable fields are marked as "indirect" objects. They
have a field which points to a descripter in the Big Object Table. This descripter gives the size of
the indexable portion, it's address, and a back pointer to the base portion. The indexable portion
is allocated from a separate heap and is never moved.

- 3 -

Scavenging

When a memory space is filled it signals that it's grade is to be scavenged. This consists of
copying all referenced objects from that space and marking it empty. The objects are copied into
two spaces. First, the empty space for this grade for objects which have been in this grade for
less than the required number of scavenges. The other is the active space for next grade, for those
objects which are to be graduated. For the maximum grade, these are the same. The program
must check that the graduate space has not overflowed before moving a new object in. If it has, it
must be marked for collection and the object "held back" for another collection. There will
always be enough room for the objects in the empty space.

Where do we find the objects which are referred to from outside? There are four places.
The Interpreter references some objects this includes the current method, the current context, all
the semaphores associated with outside events (e.g. the keyboard or mouse) and miscellaneous
others. The garbage collector must know about these (which are fixed) and handle them as spe
cial cases. The context stack is a prime source of references to objects so it must be scanned and
all referenced objects copied. All objects in younger and older grades must be scanned and any
they refer to in the target grade must be moved.

After all the objects which are referenced outside of the grade are copied, the transitive clo
sure of copied objects is taken. This is done by scanning the copied objects and copying any they
refer to. The locality of reference for the new space may be improved by calculating the transi
tive closure at intervals rather than at the end of the collection.

As each object is moved it's new address is stored in the old object and a bit is set to show
this object has been forwarded. When an object is considered for moving the forwarding bit is
tested and the object is only copied once. The forwarding pointer eani5e used to update pointers
t o t h e o b j e c t . ^ ^

Efficiency Improvements

There are several things that can be done to speed up this process. Since most of the gar
bage collections are of the lower grades, if we can avoid scanning the complete upper grades this
would save a lot of time. Also it is thought that most references are from newer to older objects.
By keeping track of references from older objects to younger objects we can avoid scanning the v / i 1
objects in older grades. This will reduce the bulk of our scanning. This remembered set is kept"? C
in the grade of the referenced object. Each remembered element contains the object which refer- \
ences an element in this grade, and the pointer which is the acmal reference. Also as a check the)
object which is referenced is also kept. This allows us to determine if the reference has been over-
w r i t t e n .

The remembered sets are stored at the top of the active space and push the alarm point down
before them. If they cause the space to overflow they are first compacted, and then if that doesn't
work the space is marked for compaction.

A large percentage of the stores are to the current context. If the remembering of stores to
contexts could be deferred then all the opcodes which store to contexts would not have this over
head. This would be a big savings since most contexts are on the stack which is scanned anyway.
This can be done by remembering all contexts which are activated and which are real objects.
When a scavenge is made the contexts on this list are scanned and any objects they refer to in
younger grades are remembered. The savings can be very large as references which have been
stored over or poped off of a stack are not remembered. Note diat contexts in grade 1 do not have
to be scanned .

- 4 -

Updating
After objects are moved, all references to them must be updated. This is typically done as

the references are traced. There are two groups of objects which must be updated.

The remembered sets for younger grades must be scanned for elements from the scavenged
grade. When these are found the remembered set pointers are updated using the forwarding
pointer. Some cleverness must be used with indirect objects as the pointer may or may not move
when the object does.

The other set which must be scanned is the big object table. All references to base objects
in this grade must be updated by using the forwarding pointer. If the base object was not for
warded this object is no longer referenced and the BOT entry and data area can be freed.

C o d e

The code which follows is the proposed memory manager written in a pseudo code like C.
The code includes some English statements for things which do not have C equivalents. The size
of an object is not consistent. It will probably be in bytes in the final code but often appears as
die number OOPs in this code. The use is not consistent. A lot of optimization will also take
place such as assigning appropriate variables to registers and expanding in place routines used
only in one place.

genr.c -> START
genr.c -> sa I vageflemory
gen r. c -> ac t i va teCon tex t
genr.c -> updateFromContex
g e n r . c - > a d d r e f
genr.c -> cotnpactGrade
genr.c -> scavengelnterpOb
genr.c -> scavengeContextS
genr.c -> scavengeRemefflber
genr.c -> copyRememberedOb
genr.c -> scavengeThiaSpac
genr.c -> acavengeReferent
genr.c -> copyAndForwardOb
genr.c -> updateReinembered
genr.c -> updateBot

[Pr inted: 09/24/85 at 10:05 AM | genr.c <- .

[g e n r . c
[^

P a g e 1]

]
]

1 >

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4 2 >
1 5
1 6
1 7 2
1 8
1 9 1
2 0
2 1
2 2 1
2 3
2 4
2 5
2 6 1
2 7
2 8
2 9 1
3 0
3 1
3 2
3 3
3 4 1
3 5
3 6
3 7 1
3 8
3 9
4 0
4 1 1
4 2
4 3
4 4 1
4 5
4 6
4 7
4 8
4 9 1

t y p e d e f s t r u c t o b j

n t

n t
n t
n t

i n t
b o o l e a n
b o o l e a n
b o o l e a n
b o o l e a n

o b j s t z e
o b j g r a d e
o b j a g e
O b j h a s h
obj f i Ked
i s F o r u a r d e d
i s C o n t e x t
I s P o i n t e r s
i s l n d l r e c t

u n i o n

{
s t r u c t o b j
s t r u c t o b j
}

s t r u c t o b j » o b j c o n t e n t s []
) o b j e c t t

« c l a s s ;
♦ f o r w a r d i n g P o i n t s r

t y p e d e f s t r u c t
i

o b j e c t M c b o t r e f
o b j e c t * b o t d a t _
I n t b o t s i z e
) b o t e

t y p e d e f s t r u c t
{

w o r d _ t
u o r d _ t
w o r d _ t
w o r d _ t
) s p a c e

* s p c fi r s t
* s p c e n d
i K s p c m a x
♦ s p c l a s t

t y p e d e f s t r u c t

o b j e c t * r e m o b j ;
o b j e c t 4 a i t r e m p t r ;
o b j e c t « r e f f l t g t ;
} r e m e m b e r e d ;

t y p e d e f s t r u c t
I

s p a c e « a c t i v e :
s p a c e 4 e i n a c t i v e ;
remembered «J)em^bered
i n t o t d A g e
} grade ;

V

/ « b i g o b j e c t t a b l e e n t r y s

/ * b a c k p o i n t e r t o o b j e c t
/) K p o i n t e r t o m e m o r y s p a c e
/ » m e m o r y s i z e

* /

* /
* /
* /

S p a c e ./ * T h e fi r s t b y t e o f t h e
/ « T h e l a s t u s e d u o r d .
/ « T h e o v e r f l o w p o i n t .
/ « T h e l a s t o f t h e a l l o c a t i o n .

* /
* /
* /
« /

/ » T h e o b j e c t w h i c h i s r e m e m b e r e d % t
f % T h e d o w n p o i n t e r i n t h e o b j e c t . % f
/ » T h e t a r g e t o f t h e r e m e m b e r e d p o i n t e r * /

/ « p o i n t e r t o s p a c e h o l d i n g o b j e c t s
/ « p o i n t e r t o s p a c e a v a i l a b l e
/ # p o i n t e r t o r e m e m b e r e d s e t
/ « c y c l e s u n t i l o b j e c t s a r s p r o m o t e d

B o t e - / * f ' ' " ¥ f K V O

* /
* /
* /
* /

[Pr inted: 09/24/85 at 10:05 AH | genr.c <- . Page 2

g e n r . c

/ ^ d e fi n e B O T o f f s e t 0
^define BOTpn t (exp) ((bo te *) ((exp) ->con ten t3 [BOTo f f se t l))
^ d e fi n e C S P o f f s e t 3
Mefine CSPva l (exp) ((in t) ((exp) ->con ten t8 [CSPoffse t]))
extern object ««CSP
ex te rn ob jec t *Con tex tS tack [] ;

/ifdefine MAXGRADE 16
^ d e fi n e S M A L L S I Z E 1 0 2 4
i V d e fi n e R E t l S I Z E 1 0 0

grade schoolCMAXGRADE] ;

i n t m u s t C o m p a c t :
i n t n a x A g e :

remembered i iAetnemberedSet ;
s p a c e « t o S p a c e ;
o b j e c t J k t o S p a c e E n d ;
s p a c e » g r a d S p a c e ;
o b j e c t J i c g r a d S p a c e E n d ;

/« need to scavenge this grade «/
/« o ld age fo r cur ren t g rade * /

/* remembered set for current grade */
/ « s p a c e t o c o p y t o . » /
/ » p o i n t e r t o u n u s e d t o s p a c e » /
/ » s p a c e t o a g e i n t o . « /
/« pointer to unused grad space */

/ ^ d e fi n e t I A X A C T 5 0
A ^ d e fi n e L A S T A C T & (A c t i v a t e d C o n t e x t s [n A X A C T])
object »ActivatedContextsD1AXACT] ;

0» object «3|(nextActContext - { ActivatedContexts 1 ;

(Pr in ted: 09/24/85 at 10:05 AH | genr.c <- act ivateContext

[g e n r . c

/ < £ « /
/ » a c t i v a t e C o n t e x t * /
/ « T h i s r o u t i n e i s c a l l e d t o s a v e a c o n t e x t % i
/« uh ich i s a rea l ob jec t uhen i t i s used as a « /
/ « r e a l c o n t e x t . R e f e r e n c e s f r o m t h e s e a r e n o t « /
/« marked as being from older to younger unless «/
/» a scavenge comes up. This saves Keeping track*/
/« of references uhich may (probably) uilT be %f
/ « c o v e r e d u p . I t d o e s n o t s a v e c o n t e x t s i n * /
/« grade 0 since they can't refer to younger */
/ « o b j e c t s . * /

act i vateContext(contextOop)
object »contextOop ;

i f (contex tOop->ob jgrade - - 0) re turn ;
« (n e x t A c t C o n t e x t - H -) - c o n t e x t O o p ;
i f (n e x t A c t C o n t e x t > - L A S T A C T) / « t a b l e f u l l s o f l u s h i t . * /

updateFromContextsO ;

[P r i n t e d : 0 9 / 2 4 / 8 5 a t 1 0 : 6 S A M | g e n r . c < - u p d a t e F r o m C o n t e x t s P a g e 5]

[g e n r . c]

1 4 7
1 4 8
1 4 9
1 5 0
1 5 1
1 5 2
1 5 3
1 5 4
1 5 5
1 5 6
1 5 7
1 5 8
1 5 9
1 6 0
161
1 6 2
1 6 3
1 6 4
165
1 6 6
167
1 6 8 1 >

/ < £ « /
/ » u p d a t e F r o m C o n t e x t s * /
/ « T h i s r o u t i n e r u n s t h r o u g h a l i s t o f t h e « /
/ » c o n t e x t s u h i c h a r e r e a l o b j e c t s a n d u h i c h » /
/ » h a v e b e e n u s e d s i n c e t h e l a s t u p d a t e a n d « /
/ « i n s p e c t s t h e n f o r r e f e r e n c e s t o y o u n g e r » /
/ « o b j e c t s . B y d o i n g t h i s a t t h e l a s t m o m e n t » /
/ » u e d o n t h a v e t o c h e c k s t o r e s i n t o c o n t e x t s » /
/ » (u h i c h a r e i n t h e m a j o r i t y) a t a l l . T h i s i s % /
/» a uin since ue dont have to do any checking «/
/ » f o r c o n t e x t s o n t h e c o n t e x t s t a c k o r i n * /
/ » g rade 0 . A l so ue don t have t o uo r r y abou t » /
/ * r e f e r e n c e s u h i c h h a v e b e e n s t o r e d o v e r . « /
/ » T h e r o u t i n e i s a s i m p l e d o u b l e l y n e s t e d » /
/ * l o o p o v e r c o n t e x t s a n d t h e i r p o i n t e r s * /
/ » l o o k i n g f o r p o i n t e r s t o y o u n g e r o b j e c t s . % /
/ » O n l y a c t i v e d a t a i n t h e s t a c k p a r t o f t h e » /
/ » c o n t e x t i s a c t u a l l y l o o k e d a t . T h e o t h e r % t
/ « d a t a i s a s s u m e d n o t t o c h a n g e . » /

updateFromContexts0

i n t c o n t e x t G r a d e , i ;
o b j e c t « c o n t e x t ;

fo r (context - Act ivatedContexts ; context < nextActContext ; ++context)

c o n t e x t G r a d e • c o n t e x t - > o b j g r a d e ;
a d d r e f (c o n t e x t , & c o n t e x t - > c l a s s) ;
fo r (i • 6 ; i < CSPvaI (context) ; ++ i)

I
a d d r e f (c o n t e x t , 4 (c o n t e x t - > c o n t e n t s t i))) ;
)

}
n e x t A c t C o n t e x t - A c t i v a t e d C o n t e x t s ;
i f (c u r r e n t c o n t e x t » r e a l o b j e c t)

{
a c t i v a t e C o n t e x t (c u r r e n t c o n t e x t) :
i f (c u r r e n t c o n t e x t » b l o c k c o n t e x t)

a c t i v a t e C o n t e x t (c u r r e n t c o n t e x t - > c o n t e n t s [5)) ;
I

)

[P r i n t e d : 0 9 / 2 4 / 8 5 a t 1 0 : 0 5 A H

[g e n r . c
1 a c a v e n a e C o n t e x t S t a c k O b i e c t t

genr.c <- scavengeContextStackObjePage 10]

]

/ « s c a v e n g e C o n t e x t S t a c k O b j e c t s * /
/ » T h i e r o u t i n e s c a n s t h e c o n t e x t s t a c k a n d c o p i e s » /
/« any object f rom the target grade uhich is referenced «/
/ * t o t h e c o r r e c t r e c e i v i n g s p a c e . T h e c o n t e x t s t a c k * /
/ « r e f e r e n c e i e u p d a t e d . * /

scavengeContextStackObjects(grade)
i n t g r a d e ;
{

o b j e c t M c c i p ;

for (cip - CSP ; cip > ContextStack ; —cip)
{
i f ((» » c i p) - > o b j g r a d e » g r a d e)

copyAndForuardObject(]|ccip) ;
* c ip - iw tc ip -> fo rward ingPo in te r ;

1

[Pr in ted: 09/24/85 at 10:05 Ad | genr.c <- scavengeThisSpaceStar t inPage 13]

[g e n r . c]

4 0 7 / * E * /
4 0 8 / « e c a v e n g e T h i e S p a c e S t a r t l n g A t # /
4 0 9 / « T h i s r o u t i n e d o e s a s c a n o f t h e o b j e c t s t h a t h a v e « /
4 1 0 / « b e e n m o v e d e t a r t i n g a t c u r r e n t O b j e c t . I t c o p i e s a n y « /
4 11 / * u n - c o p i e d o b j e c t s f r o m t h i s g r a d e t h a t t h e y r e f e r t o . * /
4 1 2
4 1 3
4 1 4 s c a v e n g e S p a c e S t a r t i n g A t (g r a d e , t h e S p a c e , c u r r e n t O b j e c t)
4 1 5 i n t g r a d e ;
4 1 6 s p a c e * t h e S p a c e ;
4 1 7 o b j e c t * c u r r e n t O b j e c t ;
4 1 8 1 > {
4 1 9
4 2 0 f o r (;
4 2 1 c u r r e n t O b j e c t < t h e S p a c e - > 8 p c e n d ;
4 2 2 c u r r e n t O b j e c t + - ((c u r r e n t G b j e c t - > o b j s i z e + 3) & ' v 3))
4 2 3 2 > (
4 2 4 s c a v e n g e R e f e r e n t s O f (g r a d e , c u r r e n t O b j e c t) :
4 2 5 2 < }
4 2 6 1 <)
4 2 7

[P r i n t e d : 0 3 / 2 4 / 8 5 a t 1 0 : 0 5 A fl | g e n r . c < - a d d r e f

[g e n r . c
f a d d r e f

P a g e 6]

]
L

1 9 1
1 9 2
1 9 3
1 9 4
1 9 5
1 9 6
1 9 7
1 9 8
1 9 9
2 0 0
2 0 1
2 0 2
2 0 3
2 0 4
2 0 5
2 0 6
2 0 7
2 0 8 1 >
2 0 9
2 1 0
2 1 1
2 1 2
2 1 3
2 1 4
2 1 5
2 1 6
2 1 7
2 1 8
2 1 9
2 2 0
2 2 1
2 2 2
2 2 3
2 2 4
2 2 5 2 >
2 2 6
2 2 7
2 2 8 2 <
2 2 9
2 3 0 1 <
2 3 1

/ « £ * /
/ * a d d r e f * /
1 % T h i s r o u t i n e t h e r e f e r e n c e a t r e f p t r * /
/ * I n o b j e c t o b j p l i " ? ; r O ' s i n g a p o i n t e r f r o m * /
/ « o l d e r t o y o u n g c - r I f i t i e t h e n t h e * /
/ « r e f e r e n c e < a n d ■. < u j » ^ o t) a r e s a v e d i n t h e * /
! % r e m e m b e r e d f o * u < d g r a d e o f t h e p o i n t e e % t
/ * o b j e c t . T h e t d r g e t (i b j e c t i e a l s o s a v e d f o r « /
/« checking that the value has not been replaced*/
/« If the memory space overflows then a garbage «/
/ » c o l l e c t i o n i s s i g n a l e d . « /

d e fi n e a d d r e f (o b j , r e f) i f

a d d r e f S (o b j p t r , r e f p t r)
o b j e c t 4 : o b j p t r ;
o b j e c t * * r e f p t r ;

grade Ntroom ;
o b j e c t R e t a r g e t ;
r e m e m b e r e d 4 : p r s e t ;
s p a c e « d a s p a c e ;

((o b j) - > o b j g r a d e > (* (r e f) } - > o b j g r a d e) \
a d d r e f S (o b j » r e f) ;

/ 4 c o b j e c t t o b e r e m e m b e r e d % !
! % p o i n t e r i n o b j e c t p o i n t i n g b a c k % t

1 % r o o m c o n t a i n i n g p o i n t e e o b j e c t % l
p o i n t e e o b j e c t .

/ * e n t r y f o r r e m e m b e r i n g i n * /
/ « t h e s p a c e u h l c h c o n t a i n s t h e t a r g e t .

t a r g e t » * r e f p t r ;
r o o m > & s c h o o l [t a r g e t - > o b j g r a d e l t
prset - room->Remembered — sizeof(remembered)
d a s p a c e - r o o m - > a c t i v e ;

p r s e t - > r e m o b j - o b j p t r ;
p r s e t - > r e m p t r - r e f p t r ;
p r s e t - > r e m t g t - t a r g e t ;

d a 8 p a c e - > 8 p c m a x s i z e o f (r e m e m b e r e d)
i f (d a s p a c e - > s p c e n d > d a s p a c e - > s p c m a x

I
m u s t C o m p a c t - t a r g e t - > o b j g r a d e ;
s i g n a l (C o m p a c t M e m o r y) ;
1

r e t u r n ;
}

V y1
1

fC ^ ^
\

k i>

