
A Third Generat ion

Smal i ta i l ( -80

Implementation

Patr ick J. Caudi l l

A l l en W i r f s -B rock

Computer Research Laboratory
Te k t r o n i x L a b o r a t o r i e s

1



Tektronix Large Object Space

S m a l l t a l k

• High performance bytecode interpreter
for 68020.

• Supports a very large number of objects.

• Regularized virtual machine design.

• Does not use an Object Table.

• Generation Scavenging based garbage collector.

• Commercial Product - Tek 4405/4406 Smal l ta lk.

2



First Generation Implementation

1 9 8 1

• Part of Xerox sponsored Smalltalk evaluation
project

• "By the book" Interpreter design.

• 16-bit oop, (32k object space).

• Implemented in Pascal for 68000.

• Performance approximately 2% of Dorodo:

Extreme memory management overhead
inherent in virtual machine design.

Representational mis-matches.

Unable to optimally utilize host machine
r e s o u r c e s .

3



Second Generator! Implementation

1 9 8 2 - 1 9 8 3

• Goal: "Usable" level of performance.

• Assembly language based implementation for
68000 /68010 .

• Completely faithful to blue book specification
(16-bit oops).

• Storage management overhead minimized via a
mixed strategy collection scheme:

Multiple context representations with
stacic based allocation.

Deferred reference counting.
Special allocation zone.
Backup mark/sweep collector.

• Resu l ts :

Performance 25% of Dorodo.

Widely used.

Evolved into commercial product,
Tektronix 4404 Small talk.



User Reaction to 4404 Small talk

• Excellent tool for developing prototypes.

• Desire to use Smalltalk for production applications.

• 32,000 Object limit major Impediment to
tlie development of large applications.

• Performance generally adequate, "but If It was
faster I could..."

Design Problems
• Interactions between various storage management

strategies very difficult to understand and maintain.
• Virtual machine design irregularities made It difficult

to e}^riment witli language extensions and
new implementation techniques.

5



Goals for a Third

Generation Implementation

(1985)

• Provide support for a large number of objects.

• Increase performance, relative to existing
interpreter.

• Remove virtual machine irregularities due to
limited object space.

• Preserve basic semantics and functionality
of virtual machine and image.

• Minimize implementation time.

• Maximize maintainability and extensibility.

6



Fundamental Design
D e c i s i o n s

• Bytecode interpreter.

• 32-bit oops and very large objects.

• Generation Scavenging based
storage management.

• No Object Table.

• New representation for
CompiledMethods and other
representational changes.

• Image changes as needed to
accommodate new design.



Object Memory
A r c h i t e c t u r e

An OOP

8



Object Memory
A r c h i t e c t u r e

Indexable Fields

Fixed Fields

Object Header

Object Format
(Normal Indexable)



Object Memory
A r c h i t e c t u r e

Object Format
(Remote Indexable)

1 0



Object Memory
A r c h i t e c t u r e

Object Grades

Storage Regions



Object Memory
A r c h i t e c t u r e

First field of object

Oop of object's class
Reserved for S ? ttma

garbage collector j ̂  used lyP® Hash Va lue

SSSSa Swdl Size (in bytes) of object

CTX -1 if this is a context object
RMT -1 if this object has a remote

indexable part

Type - 0 normal (non-indexable)
1 byte indexable
2 word (16-bit) indexable
3 long (32-bit) indexable
4 pointer indexable

Object Header Format
1 2



CompiledMethod
Representation

Problems with CompiledMethods:

Violates object memory design rules
by combining object references
and binary data.

Requires special case code and
special primitives to support.

Higli decoding overliead.

Cannot be subc lassed.

I n fl e x i b l e s o u r c e c o d e r e f e r e n c e .



CompiledMethod
Representation

24-bit source code reference

Bvtelodes

Method Header Extens ion

Literal #n-1
■

■

» M » e e o o o o e o o o o o a « e « e o e e f l » i H i a i M o a o » w e « e o o e o o e o M O M o a a a a i a a a a a i a m M e M e i » o » e f l i a M M a » M M a 8 M » M H M M a

Literal # 2
Literal # 1

l \ / l e t h o d H e a d e r

Object Header
(Binary byte indexable)

Binary
d a t a

Blue-book" design



CompiledMethod
Representation

A d d i t i o n a l l i t e r a l s

Bytecbdes

First L i tera l

I n s t r u c t i o n F r a m e

A LiteralArray

Object Header: Pointer
indexable, no fixed fields,
may not be remote.

A BytecodeArray

Object Header; Byte
indexable, no fixed fields,
may not be remote.

S o u r c e C o d e R e f e r e n c e

I n s t n j c t i o n F r a n fi e

L i t e r a l F r a m e

M e t h o d H e a d e r

A CompiledMethod

Object Header:
non- indexable.

New design



P e r f o r m a n c e

Approximately 50% faster than our
2nd generation system when

executing on same hardware.

Benchmarks a t 95% of Dorodo.

Standard image has over 33,000

objects.

Images containing 60,000+ objects
commonly used.



Sta t i s t i cs

100K+ bytes allocated per second.

-0.5% Reach grade 1.

-95% are never copied.

~3% of execution time spent

scavenging.



C o n c l u s i o n s

Proves effectiveness of generation
based scavenging and direct pointers

for a high performance Smalltallc

implementation.

Interpretation is a practical alternative
for high performance Smalltalk

implementations.

Begins to eliminate the small object /

object spaces bias of Smalltalk system.




