A Third Generation
Smalltalk-80
Implementation

Patrick J. Caudill

Allen Wirfs-Brock

Computer Research Laboratory
Tektronix Laboratories

Tektronix Large Object Space

Smalltalk

« High performance bytecode interpreter
for 68020.

« Supports a very large number of objects.

» Regularized virtual machine design.

» Does not use an Object Table.

- Generation Scavenging based garbage collector.

« Commercial Product — Tek 4405/4406 Smalltalk.

First Generation Implementation
1981

« Part of Xerox sponsored Smalltalk evaluation
project.

« "By the book" interpreter design.
« 16-bit oop, (32k object space).
» Implemented in Pascal for 68000.

« Performance approximately 2% of Dorodo:

Extreme memory management overhead
inherent in virtual machine design.

Representational mis-matches.

Unable to optimally utilize host machine
resources.

Second Generaton Implementation.

1982-1983

Goal : "Usable"” level of performance.

Assembly language based implementation for
68000/68010.

Completely faithful to blue book specification
(16-bit oops).

Storage management overhead minimized via a
mixed strategy collection scheme:

Multiple context representations with
stack based allocation.

Deferred reference counting.

Special allocation zone.

Backup mark/sweep collector.

Results:
Performance 25% of Dorodo.
Widely used.

Evolved into commercial product,
Tektronix 4404 Smalltalk.

User Reaction to 4404 Smalltalk

 Excellent tool for developing prototypes.
- Desire to use Smalltalk for production applications.

« 32,000 Object limit major impediment to
the development of large applications.

- Performance generally adequate, "but if it was
faster I could ..."”

Design Problems

« Interactions between various storage management
strategies very difficult to understand and maintain.

« Virtual machine design irregularities made it difficult
to experiment with language extensions and
new implementation techniques.

Goals for a Third
Generation Implementation
(1985)

« Provide support for a large number of objects.

- Increase performance, relative to existing
interpreter.

- Remove virtual machine irregularities due to
limited object space.

- Preserve basic semantics and functionality
of virtual machine and image.

« Minimize implementation time.

« Maximize maintainability and extensibility.

Fundamental Design
Decisions

Bytecode interpreter.

32-bit oops and very large objects.

Generation Scavenging based
storage management.

No Object Table.

 New representation for
CompiledMethods and other
representational changes.

« Image changes as needed to
accommodate new design.

Object Memory

Architecture
[e
Ta Parameter

0 J Virtual address of object
1 31-bit 2's complement integer

An OOP

Object Memory
Architecture

Indexable Fields

Fixed Fields

Object Header

Object Format

(Normal Indexable)

Object Memory
Architecture

Indexable Fields
Remote Header

Fixed Fields

Object Header

Object Format

(Remote Indexable)

10

Object Memory
Architecture

Remote-part
Heap

New object allocation

Object Grades

Storage Regions

1

Object Memory
Architecture

e, [Tl Heshvaue
Size (in bytes) of object
31 16

CTX —1 if this is a context object
RMT — 1 if this object has a remote

indexable part

Type - 0 normal (non-indexable)
1 byte indexable
2 word (16-bit) indexable
3 long (32-bit) indexable
4 pointer indexable

Object Header Format

12

CompiledMethod
Representation

Problems with CompiledMethods:

Violates object memory design rules
by combining object references
and binary data.

Requires special case code and
special primitives to support.

High decoding overhead.

Cannot be subclassed.

Inflexible source code reference.

13

CompiledMethod
Representation

24-bit source ode reference

Binary
data

Method Header Extensmn |
Literal #n-1

Object
references

Literal # 2
Literal # 1
Method Header

Object Header

(Binary byte indexable)

"Blue-book™ design

14

CompiledMethod
Representation

Additional literals

Bytegodes

First Literal

Instruction Frame

A BytecodeArray

Object Header: Byte
indexable, no fixed fields,
may not be remote.

A LiteralArray

Object Header: Pointer
indexable, no fixed fields,

may not be remote.

Source Code Reference

Instruction Frame

Literal Frame

Method Header

A CompiledMethod

Object Header:
non-indexable.

New design

15

Performance

Approximately 50% faster than our
2nd generation system when
executing on same hardware.

Benchmarks at 95% of Dorodo.

Standard image has over 33,000
objects.

Images containing 60,000+ objects
commonly used.

16

Statistics

100K+ bytes allocated per second.

~0.5% Reach grade 1.

~95% are never copied.

~3% of execution time spent
scavenging.

17

Conclusions

Proves effectiveness of generation
based scavenging and direct pointers
for a high performance Smalltalk
implementation.

Interpretation is a practical alternative
for high performance Smalitalk
implementations.

Begins to eliminate the small object /
object spaces bias of Smalltalk system.

18

