An Integrated Color Smalltalk-80 System

Rebecca Wirfs-Brock
rebeccaw%spt.tek.com@relay.cs.net
(503) 627-5882

P.O. Box 500, Mail Sta. 50-470
Tektronix, Inc.
Beaverton, OR 97077

ABSTRACT

The Smalltalk-80™ user interface and graphics model
are based on monochromatic graphics. One natural
step in the evolution of the Smalltalk-80 system is the
addition of color. This paper describes an
implementation of color Smalltalk. Classes have been
defined to manipulate visual color models and colored
graphics objects. The extensive collaboration
between classes which describe color, classes which
perform basic graphics operations, and classes in the
user interface is explored. Issues in the design and
implementation are examined. Potential future
directions for object-oriented color systems are
discussed.

Introduction

The Smalltalk-80 user interface and graphics model
described in [Goldberg and Robson, 1983] are based
on a monochromatic graphics imaging operation

called BitBIt (bit block transfer). Most commercially

available workstations and personal computers use
color display hardware. Readily available windowing
and graphics systems on these platforms support
color. A natural extension of Smalltalk-80 includes
the development of color graphics and a color BitBIt
imaging scheme.

This paper describes the color Smalltalk system
developed at Tektronix. This is our third
implementation of color for Smalltalk. The first two
implementations were research prototypes where we

explored, among other things, the feasibility of
specialized hardware support for color [Wirfs-Brock
and Miller, 1986]. We approached our third
implementation with the strong conviction that color
needed to be highly integrated into the existing
Smalltalk-80 user interface and graphics paradigm.
We wanted to provide a rich framework for the
construction of color Smalltalk applications. The
Smalltalk programmer should have easily accessible
mechanisms for selecting the colors to use in drawing,
for experimenting with and generating colorful
graphics, and for constructing visually interesting
applications.

First we will discuss our objectives for this work and
describe the color, graphics and supporting classes in
our system. We will explain our color BitBIt imaging
model. Next we will show an example of shared
responsibilities of and the communications between
color, graphics, and utility classes. We will then
discuss the framework we built to allow cooperation
between color applications. Finally, we will
summarize our work and briefly explore possible
future directions.

Design Goals

Our design focused on providing solutions to four
fundamental questions.

e What are the appropriate graphics objects and
imaging model to present to the user?

e How should colors be described and managed?

e What is an appropriate relationship between
colors and colored graphics objects?

e What policies should we establish for using color
graphics in an application, and what simple
mechanisms can we put in place to support these
policies?

Our primary objective was to produce a complete
color implementation that would be useful to a broad
spectrum of Smalitalk-80 programmers. Adding color
to an application should be a natural process. The
typical Smalltalk programmer does not want to deal
directly with the physical representation of bitmaps or
limitations of a hardware color map. The programrmer
with some level of graphics sophistication should
have a rich enough set of capabilities for constructing
reasonably sophisticated applications.

Our implementation was to be an evolutionary
extension of the Smalltalk-80 graphics and user
interface environment. We felt that it would simply
create too large a gap between monochrome and color
if we abandoned the Smalltalk-80 BitBlt, or the
Model-View-Controller paradigms in favor of
something new.

We also wanted our implementation to be upwardly
compatible with monochrome Smalltalk. The
transition path for the existing Smalltalk-80
applications to color should be smooth. An
application that did not redefine basic graphics and
user interface classes by modifying or relying on the
structure of instance variables in these classes should
run correctly without modification. We wanted to be
able to transfer graphics objects between
monochrome and color Smalltalk. We therefore
developed a formal specification for color BitBlt
graphics that was completely upwardly compatible
with monochrome graphics. Although we rearranged
the display object class hierarchy, we preserved
protocol found in monochrome Smalltalk-80, even
when a class moved to a new location in the graphics
object hierarchy.

Special modes or global state should not intrude into
typical programming situations. Our BitBIt imaging
model also operates across all types of Forms. This
allows one to program free of the need to learn a
litany of rules and exceptions for generating graphics.

The Color Framework

A color framework requires a mechanism for
describing color, and another mechanism to associate
colors with Forms. In order to describe colors, we
devised a color model abstraction, and a
corresponding set of classes which create and
manipulate colors defined within a particular .color
model. A second mechanism supports grouping
colors together to form a palette to use when
displaying colored Forms. Colors appearing on the
screen are defined by the current values of the

hardware palette.

Color Models

A color model is a system that allows for the orderly
description or classification of color according to a
basic definition. We defined an abstract color class,
and concrete classes to support specific color models.

Color is an abstract class which supports creating
colors. Figure 1 illustrates the hierarchy.

Color
AbstractRGB
IntensityRGB
TekRGB
IntensityGray
TekCMY
TekHLS

The abstract class Color and its
subclass hierarchy

Figure 1

The color models we support are RGB, CMY, HLS,
and grayscale.

RGB is an additive color model. In an RGB color
model, coloring is thought of as adding colored light.
A color is composed of three components
representing the contribution of red, green, and blue
to that color. Raising the levels of red, green and blue
produces a lighter color. Qur two RGB classes define
the contributions of red, green and blue in terms of
linear intensities, or as perceptually even lightness
increments. An object-oriented system allows us to
clearly define the properties of any RGB color object
and refine this abstraction with different concrete
representations. For example, we defined both
IntensityRGB and TekRGB classes which model
different RGB systems.

In the CMY color model, a color is composed of three
components representing the contributions of cyan,
magenta, and yellow to the color. When colors are
mixed in this system, less light is reflected and colors
appear darker. CMY is referred to as a subtractive
color model and is familiar to artists and those
familiar with the printing process.

The HLS color model represents a color as a mixture
of the qualities of hue, lightness (the amount of white
or black in a color), and saturation (the extent to
which a color differs from a gray of the same

lightness).

The grayscale color model represents colqrs as shades
of gray of varying intensities between white and

black.

A color expressed in any model can be converted to a
color expressed in any other model. This allows
programmers the flexibility of dealing with colors in
terms familiar to them. However, many users are not
familiar with colors in terms of their components.
Therefore, we added simple protocol to the Color
class for creating instances of its concrete classes by
referring to common English names. Color and its
subclasses understand how to create the base colors
black and white and the colors pink, red, orange,
brown, yellow, green, blue, purple, magenta, cyan and
gray. Lighter or darker versions of a color may be
created by prepending ’light’ or *dark’ to the
capitalized base name, for example, lightBlue or
darkGreen.

Palettes and Colors

Mapping between pixels and colors is represented by
the Palette class. Pixel values are used as indexes
into a palette, which is an array holding information
about the color to display for that pixel. A Palette is
a collection of colors. A Palette can hold any
concrete instance of a color class. The interface to the
display color map is represented by a single palette,

the HardwarePalette. HardwarePalette is a
subclass of Palette. The system hardware palette is
controlled by the DisplayScreen object. See
Figure 2.

The Display Object Hierarchy

In Smalltalk-80, the class DisplayObject defines an
abstraction for classes of objects that can be displayed
(or drawn) upon a DisplayMedium. The class
DisplayMedium, which is a subclass of
DisplayObject, represents an object that can be
displayed upon. In Smalltalk-80, DisplayObjects are
partitioned (not cleanly in all cases) into classes of
objects that can be displayed on (all the subclasses of
DisplayMedium) and classes which represent
graphical rendering paradigms, such as Circles and
Arcs. DisplayMedium subclasses lead a dual life in
Smalltalk-80; they are classes which represent
fundamental graphics constructs that can also be
displayed upon.

A side-by-side comparison of the color
DisplayObject and the monochrome class hierarchies
illustrates the changes we made.

0
Pixel at
M Xns Ym 0 - red
1 - blue -4 |Red
O=2 P 2 - purple| = .0 | Green
3 - white 7 |Bilue
4 - gray
0 X—> ,
= Purple Pixel
Form Color Palette When Displayed

Figure 2

Smalltalk-80 Monochrome

DisplayObject
DisplayMedium
Form
Cursor
DisplayScreen
OpaqueForm

Smalltalk-80 Color

DisplayObject
DisplayMedium
AbstractForm
Form
DisplayScreen
FormSimulation
PaletteForm
Halftone
OpaqueForm
Cursor

DisplayObject Hierarchy Comparison

Figure 3

Several differences are immediately apparent.

e We moved OpaqueForm to be within the
DisplayMedium hierarchy. This added to color
Smalltalk the ability to construct OpaqueForms
directly by drawing on them, which is possible
only if a DisplayObject is also a
DisplayMedium. There seemed no compelling
reason not to broaden the utility of
OpaqueForms, particularly since their very
name suggests that they are a variant of Form.

e We also defined a new class, AbstractForm,
which defines the abstraction for two-
dimensional patterns of pixels. In monochrome
Smalltalk, the class Form served as both the
abstract model for two-dimensional pixels
arrays, and as a concrete representation. The
class AbstractForm now serves as the abstract
model, and leaves particular representations to its
subclasses.

e We also defined two new classes, PaletteForm,
and Halftone.

Display Objects

The class AbstractForm provides abstract protocol
for subclasses that store images as two-dimensional
arrays of pixels. Instances of AbstractForm
subclasses can be created by specifying the extent
(width and height of the pixel array), and the depth
(the number of bits representing a pixel). Instance
protocol is defined to edit the contents of the object’s
pixels, perform basic image manipulation operations
such as rotation and scaling, access pixels within the
object, ask the chromaticity of the object, and convert
a subclass of AbstractForm to any other subclass of
AbstractForm. Concrete subclasses of
AbstractForm specify explicit representation details.
In addition to defining new class and instance
protocol, all protecol defined in monochrome
Smalltalk is supported for Forms of any depth.

A Form is a two-dimensional rectangular array of
pixels. Forms in color Smalltalk have the additional
instance variable, depth, which is not present in
monochrome Smalltalk. The possible range of pixel
values is determined by the depth of a Form. Forms
of depth one are equivalent to monochrome
Smalltalk-80 Forms. A Form of depth eight, for
example, could represent one of 256 different valuses
in each pixel, as eight bits per pixel translates to 2
possible values. Forms are typically of d;pth one or
the depth of the DisplayScreen, for practical
performance considerations, but are not restricted to

those depths. Additionally, color Smalltalk Form
instance protocol supports a variety of coloring,
dithering, and depth coercion facilities.

The physical display or frame buffer is represented by
a single instance of the class DisplayScreen.
Because DisplayScreen is a subclass of Form, it is
assumed to be defined as a rectangular array of pixels.

A FormSimulation simulates pixel accessing for
instances of Form whose depth is not supported by
primitive (non-Smalltalk) code. FormSimulation is
part of the mechanism which enables us to support
graphics operations on forms of any depth.

We could have defined Form to include a Palette,
but chose not to. Frequently, a programmer wants
simply to deal with a pattern of pixels. At other
times, the relationship between pixels and their color
needs to be explicitly controlled. Therefore, we
defined a PaletteForm to be a subclass of Form with
an associated Palette.

A Halftone is the primary mechanism whereby
desired color effects can be specified to BitBIt and its
subclasses. Halftones are used to achieve a variety
of graphics effects, such as stenciling color onto
Forms of depth greater than one, or tiling regions of
pixels with repeating patterns.

In monochrome Smalltalk there is no Halftone class.
Instead halftone masks of extent 16 by 16 are
arguments to BitBlt. Monochrome Smalltalk Form
class protocol defined constant Forms suitable as
BitBlIt halftone arguments. In our color
implementation, we added much additional color
information to the definition of the halftone mask
argument to BitBIt. These augmented halftoning
capabilities are supported by the Halftone class.

An OpaqueForm is a composite object which stores
an image as a Form along with a clipping mask (a
Form of depth one). The clipping mask defines
whether pixels in the Form are opaque (the
corresponding clipping mask bit is one) or transparent
(the corresponding clipping mask bit is zero).
OpaqueForms allow the display of nonrectangular
patterns of pixels. An example of an OpaqueForm
might be a cursor or a mailbox icon.

BitBIt and Graphics Imaging

The class BitBlt performs the primary graphics
imaging operation in Smalltalk-80, a pixel-by-pixel
transfer from a source to a destination form. Instance
variables in Smalltalk-80 BitBlt include a source
form, a halftone form, a destination form, and a rule

which specifies how pixels are to be combined. In
color Smalltalk, the source, halftone or destination
form can be any subclass of AbstractForm of any
depth. The precise transfer function for pixels is
controlled by a number of other BitBlt instance
variables.

We had explicit performance goals for certain BitBlt
cases. Performance for typical BitBlt operations in
the color development environment were to be as fast
or faster than our monochrome implementation.
Performance of common onscreen graphics
operations needed to be optimal. In particular,
displaying text, erasing and filling interiors of views,
removing and redrawing scroll bars, highlighting text,
and framing windows required special attention.
Support for combinations of Forms having a depth of
one with Forms of other depths was necessary, for
example, to display text on the display screen.

We added a source clipping mask instance variable to
color BitBIt. This allows us to enable transfer of the
source form on a pixel-by-pixel basis when displaying
OpaqueForms. Drawing an OpaqueForm is thus
supported in a single BitBIt operation, using arbitrary
combination rules. Primitive color BitBlt code
directly supports drawing OpaqueForms. In
contrast, monochrome Smalltalk displays
OpaqueForms in a two-step operation: the first
BitBIt clears the destination area described by the
OpaqueForm shape (or clipping mask), the next
BitBIt displays the OpaqueForm figure. Such a
two-step process would simply not work for
transferring colored pixels. The notion of transparent
pixels (source pixels not transferred to the destination
form) needs primitive support in a color system.
Clearing and then ORing of colored pixels does not
produce the desired visual effect as those operations
do with monochrome BitBIt. Clearing the destination
form changes the values of the pixels within it.

Because these values are no longer direct color
specifications, but instead are indexes into a palette,
changing these values for a color destination simply
changes the colors of its pixels. In a color system, the
clearing operation is simply not defined.
Furthermore, using the OR combination rule
combines two pixel values to produce a third, often
unexpected value.

BitBIt Imaging Effects

A Halftone is a composite object consisting of a
Form and a PixelStyle. A pixel style allows the
specification of a number of parameters, including a
foreground value, a background value, and a filter.
These parameters allow a variety of interesting
imaging effects, among them filling, stenciling,
filtering, and stippling. o

A pixel of depth one can only have one of two
possible values: one or zero. When pixels of different
depths are combined, there must be a mechanism for
producing the correct pixel value. Stenciling is an
operation that transforms pixels of depth one into
pixels of depths greater than one. Values which are
written to pixels of depth greater than one are
controlled by the pixel style. A pixel style contains
specifications for foreground and background pixels.
The rule is quite simple: pixels of depth one are
translated to their corresponding foreground or
background pixel value before being combined with
pixels of greater depth. The pixel style foreground
value corresponds to one in a monochrome pixel, the
background value corresponds to zero. For example,
characters in a font are stored as monochrome Forms
(as is much of the existing user interface) and
transferred to the display screen through a BitBlt
stenciling operation. See Figure 4. If the background
value is nil, background pixels are not transferred to
the destination.

0000000000
Of1111111/0

Monochrome
Pixel pattern
In source

form for the
character 'T"

0000

0000 #
Foreground
Background

Stenciling a Character onto the Display.
X signifies unchanged Pixels.

XXXXXXXXXX

nu
=

Colored Pixel
pattern on
display for the
character T

Figure 4

Filtering is an operation that transforms colored

pixels into monochrome pixels. See Figure 5. This is

also controlled by the pixel style, which contains a
filter pixel value. If a colored pixel has the same
value as the filter pixel, it will be transformed into a
one, if it does not, it will be transformed into a zero.
We have used the filtering operation for a variety of
applications. For example, filtering can be used to

highlight text written in one color on a background of

another color.

Filling is an operation whereby colored halftone
pixels are directly combined with destination form
pixels. The interior of a view is filled by tiling a
halftone of depth one (with the appropriate pixel
value) onto the view. A pattern can also be
repetitively applied to fill the entire destination form
by tiling. See Figure 6.

Colored Pixels

...12536626...

Filter = 6

Filtering Colored Pixels into Monochrome Pixels

Monochrome Pixels

...00001101...

Figure 5

Pixel Pattern

Destination Form

Filling a Region with a Pixel Pattern

Figure 6

Stippling is an operation that combines colored source

form pixels directly with destination form pixels,
wherever the halftone form logically ANDed with the
source clipping mask is one. Stippling controls
translucency and is an effective technique for de-
emphasizing an area (for example, de-emphasizing a
menu selection when it is currently unavailable to the
user).

This very brief overview of BitBlt capabilities is the
level of detail most Smalltalk programmers require.
We were able to hide further details of BitBIt by
providing high-level protocol for displaying objc.cts
and generating colors using the previously described
techniques. The utility graphics classes play an
important role in facilitating such a higher level
interface. A more complete description of color
BitBlt is given in the appendix.

Dithering

We implemented color Smalltalk on a workstation
with a limited hardware palette. To relax this
limitation, we developed ColorDither and its
subclasses that support color and grayscale dithering.
Through dithering, a color is represented as a pattern
of colored pixels rather than a single pixel. By
trading off spatial resolution for a greater number of
displayable colors, more colors can be effectively
displayed than can be represented in the hardware
palette [Foley and Van Dam1982]. This is the color
analog of using varying black and white halftone
patterns to obtain shades of gray in a monochrome
system. The dither classes turn a Color into a
Halftone pattern that approximates that color by
spatial averaging among other colors. A Form can
also be dithered into a Form of the same width and
height but with fewer bits per pixel.

Ordinarily, programmers using color must choose
specifically whether to use dithered or nondithered
colors. Programmers using our system need not know
how colors are generated, nor are they forced to make
this choice. Our default hardware palette for color
Smalltalk is a palette appropriate for dithering,
containing an ordered sequence of the primary colors.
These primary colors occupy the upper half of the
palette, leaving the lower half of the palette free for
other pure, undithered colors. Dither classes
implement protocol to return dithered Halftones and
keep preinitialized default dither information. Thus
programmers can use dithered or nondithered color in
high-level graphics operations with no extra
programming required.

Object Collaboration in the Color
Smalitalk Interface

High level graphics are implemented in our system by
several objects with shared responsibilities. Utility
classes, such as Halftone or ColorDither, sefve an
important role. These classes provide a
straightforward interface for classes that call them to
implement part of the work. The internal details of
utility methods, however, assume a great deal of
knowledge about other classes in the system. A well
partitioned object-oriented design should present a
clean interface to classes used directly by
programmers. Detailed knowledge about the overall
workings of the system (and corresponding message
protocol) properly rests with utility classes or within
methods intended to be private. As an example o.f
cooperating classes, we will next trace the operation

of filling a form with color.

Filling a region with color

The programmer can fill an area with dithered color
with the single message fill:color: to a Form object.
Let us examine how this works.

Display fill: aRectangle color: Color lightPurple
Display fills an area using the OVER BitBlIt

combination rule and a mask or halftone constructed
from the specified color, as shown below.

| self

fill: aRectangle
rule: Form over
mask: (Halftone color: Color lightPurple)

The message lightPurple to Color returns a color
object with the appropriate components for light
purple.
Color lightPurple
"Answer an instance of a concrete Color sub-
class that represents the color lightPurple."

Tself fromintensityRGB: (IntensityRGB
red: 0.7 green: 0.2 blue: 1)

Sending the message color: to Halftone class
constructs a dithered halftone pattern, This dithered
halftone is created by consulting dither and color
classes. Code in the method for Halftone color:
relays to ColorDither default, which returns a color
dither object. That color dither object is responsible
for generating the halftone pattern.

Halftone color: aColor
"Answer an instance of the receiver with form
approximating <aColor> and the default pixel
style. Relay to the default ColorDither.”

TColorDither default color: aColor

The color dither object receiving the message color:
calls upon Halftone to create an empty halftone.

newHalftone « Halftone form: (Form
extent: self tilingExtent
depth: self depth).

It next asks Color for an array of color components.

components « aColor asintensityRGB
components.

Then the color dither proceeds to build the dithered
halftone through a series of BitBlt filter operations.
The color: method is implemented in some twenty
lines of Smalltalk code. After the halftone is

generated, the message fill:rule:mask: can be sent.
Code in fill:rule:mask: generates a BitBIt object and
sends copyBits, performing the fill operation with the
constructed color halftone.

The work of halftone creation was distributed among
Halftone, ColorDither, Color and BitBIt objects.
The most complicated algorithm, that of actually
controlling the generation of the colored halftone
pixels was, most properly, performed by a dither
object.

A Framework For Cooperative Use
of Color

The hardware palette is a limited resource. We
devised a technique for sharing palettes among
several windows or applications. Let us examine how
colors can be shared between applications and the
supporting framework provided for such cooperation.

Colors and Views

All views (or windows) in color Smalltalk have a
viewStyle instance variable. A ViewStyle consists
of a Palette and a PixelStyle. Through these
variables, a view has its own colors to display text,
background, and other graphics. Whenever a view is
activated, its ViewStyle is installed. This loads its
palette into the hardware palette, and sets the default
PixelStyle to its PixelStyle. The PixelStyle
specifies the foreground and background color
indexes to use for the text and the background,
respectively. These are also the colors used for
drawing when no other explicit color specification is
made.

A default ViewStyle is assumed by new views. A
different ViewStyle can be specified at any time,
from the right mouse button menu, or within code.
We defined a ViewStyleManager which manages
named ViewStyles. It also broadcasts the system
default to scheduled views. It is accessible by
dictionary protocol. A new ViewStyle for a view can
also be selected from a menu of available
ViewStyles. ViewStyles can be constructed and
shared among applications through the
ViewStyleManager.

Cooperating Palettes

We designed a number of ViewStyles that define
PixelStyles and Palettes in a cooperating manner.
We did this by allowing PixelStyles and Palettes to
contain nil values. nil palette entries do not change
colors previously defined in the hardware palette.

Only non-nil values are loaded into the hardware
palette. Therefore, if different non-nil palette entries
are used for different views, activation of one view
will not affect the coloring of other cooperating views
or cause flashes of color when control passes between
views. Cooperating ViewStyles generally consist of
Palettes which each define different foreground and
background colors, using different palette indexes.
They also typically load the upper half of their
Palettes with colors appropriate for color dithering.

To ensure that transient graphics appear in specific
colors, regardless of the ViewStyle of the view from
which they were executed, color values can also be
explicitly declared and managed. ViewStyle,
PixelStyle and Palette respond to the message
install. Installing a view style installs a palette into
the hardware palette. It also installs a pixel style.
Therefore, installing a view style allows direct control
of these globally accessible defaults. Each of these
global attributes can also be installed individually as
well.

Colors can also be changed for the duration of a
block. Palette, PixelStyle and ViewStyle respond to
the message showWhile:. The argument to
showWhile: is a block. The block is executed after
the appropriate values are installed. The Palette,
PixelStyle or ViewStyle resource is restored to its
prior values after the execution of the block.

For example, this code ensures that the *black on
ivory’ view style is installed while the user is queried
for a response:

(ViewStyleManager default at: ‘black on ivory’)
showWhile:
[FillinTheBlank request: 'File name?’]

The query "File name?" is displayed with black text
on an ivory background.

A background process that writes graphics to the
display screen needs to observe a few rules to operate
in a color environment. Background processes should
not rely on the default PixelStyle or default
ViewStyle. And they should not contend for the
display palette. A background process should ensure
that its desired Palette and PixelStyle are installed
when it performs graphics. And if it intends to leave
graphics on screen after it relinquishes control, it
needs to construct a palette that is designed to coexist
with other processes. Otherwise, the colors of any
graphics it leaves on the display may change when the
process relinquishes control.

The Smalltalk-80 development environment needed
modification to work within a color framework.
When a view is activated, its view style is installed.
When the System Transcript prints a message, it must
print in its view style, regardless of the view style of
the currently active window. When windows are
moved or framed, the screen must repaint uncovered
portions in the correct colors. When the debugger
comes up, it must appear in its own colors. Finally,
when the user types <Ctrl-Shift-C>, the text typed to
the emergency evaluator must be visible.

We modified a modest number of methods to make
this work. Appropriate methods send messages either
to directly install a Palette (as was the case of the
emergency evaluator) or to direct a view to install its
PixelStyle and/or Palette. Four one-line methods
were added to View instance protocol which
implemented the necessary functionality:
installPixelStyle, installViewStyle,
showPixelStyleWhile:, and showViewStyleWhile:.

Design Issues

Our implementation of color Smalltalk defined over
forty new classes and added approximately 400,000
bytes to the size of the executable Smalltalk image.
Clearly, our color implementation represents a
significant increase in the complexity of our Smalltalk
image. Reasonable questions to ask of our design are:

e How fast is it?

o How easy is it to port monochrome applications
to it?

e How easy is it to port color Smalltalk to other
hardware?

Performance

BitBIt operations on forms of depth one, or onscreen
graphics, have been highly optimized in our
implementation. The OVER BitBlt combination rule
has been especially optimized. So have some other
cases, such as halftoning. We carefully tuned the
existing BitBlt calls in the Smalltalk development
environment to exploit the optimized primitive BitBIt
code. Consequently, graphics performance of the
standard development environment in color Smalltalk,
is as good as, or better than, our monochrome
implementation.

Dithering is somewhat more expensive than drawing
with a pure color, although it is still quite reasonable.
For example, filling a colored form of extent 64 by 64
is 25% faster when using a halftone of depth one, than

when using a dithered halftone. Using forms of other
depths than depth one or the display depth requires
using BitBIt simulation, which is also slower. Mixing
forms of depth one and the depth of the display screen
is supported by primitive code, and is therefore quite
fast. Mixing forms of other depths requires a depth
coercion algorithm, which is significantly slower.

Porting Monochrome Applications

Our color implementation has not yet been fully
exploited by an extensive color application. So far we
have made more sophisticated usage of color than our
users. Most of our users are experienced in Smalltalk
programming, not graphics. However, several users
have managed to add color to existing monochrome
applications in a day or two. Lines and backgrounds
were colored, and multi-colored forms were
incorporated into the application. For most
applications, more color was unnecessary.

We encountered a few cases where monochrome
applications broke when ported to color. One
common problem arose when BitBIt combination
rules other than OVER were used. These rules have
no meaning in color, and lead to unexpected results.
The problem can be solved in one of two ways. One
can simply change the combination rule to OVER,
replacing the destination with the effective source
pixel. If that is undesirable, one must devise another
mechanism to achieve a comparable graphics effect.
For example, an area can be filled with a halftone of a
specified color, or a colored line can be highlighted by
changing its corresponding palette entry. How to add
color effectively to a monochrome graphics
application is not obvious in all cases.

Portability

It is difficult to design a system for portability without
having first attempted ports to a variety of target
machines. In general, classes that do not represent
physical machine or architectural structures are
portable. Classes that do encapsulate machine
dependencies need rework. Our implementation can,
with minor changes, accommodate differing hardware
palette sizes or frame buffer depths. A single image
and interpreter (with differing appropriate defaults
and behaviors) support both a grayscale and a color
model of a Tektronix workstation.

Our implementation represents Forms as pixel values
which are mapped to palette entries. Color
information is captured through associating a Palette
with a Form pixel array. An architecture that

represents images as direct color specifications, for
example, would require replacing the Form class
definition and, quite possibly, rethinking the role of
PaletteForms.

For efficiency we store pixels as a byte array of
tightly packed pixels. The pixel ordering within the
bytes matches the Motorola processor memory
organization. An implementation for an Intel
processor, or for a machine architecture based on bit
planes rather than pixels would undoubtedly require
reworking the Form pixel representation. Primitive
BitBIt code most certainly is not portable across
machine and processor architectures. Probably the
most severe constraints to portability would be
attempting to port color Smalltalk to a software or
system architecture that did not support reasonably
efficient color BitBlt primitive code implementations.

Conclusions

It is certain that Smalltalk graphics cannot stay where
they are today; the world would pass Smalltalk by.
There are many directions that Smalltalk graphics can
go. Smalitalk implementations may require
integration with emerging windowing and graphics
standards such as X windows or NeWS™ [Gettys et.
al. 1987, Sun Microsystems, Inc. 1987]. These
systems define window and graphics facilities for
applications. Each of these windowing and graphics
systems defines an imaging operation that differs
from monochrome or color Smalltalk BitBIt. Color
support with different color BitBlt semantics has
certainly been provided by other Smalltalk
implementations [Digitalk87, Miranda87]. A
Smalltalk implementation based on a particular
windowing or graphics facility would not necessarily
implement BitBIt graphics as part of the Smalltalk
virtual machine; instead it would provide Smalltalk
abstractions of services provided by the windowing
system and call directly upon the window manager for
those services.

Another possible direction for Smalltalk would be to
base the Smalltalk graphics and development
environment on a richer and potentially portable
graphics imaging model, such as Postscript [Adobe
Systems Inc. 1985].

We view our color Smalltalk implementation as an
integrated system for developing interactive color
graphics applications in Smalltalk. There is no
standardization in the Smalltalk community for what

constitutes a reasonable set of color graphics
capabilities. We hope we have provided some insight
into what constitutes a high level support for color
and color graphics systems.

Acknowledgements

This paper is possible due to the incredible talent and
energies of my teammates on the Tektronix color
Smalltalk engineering team: Mike Miller, Roxie
Rochat and Wes Hunter. Jocelyn Yu deserves special
recognition for her BitBIt implementation. Merlin
Miller was responsible for the hardware design and
initial BitBlIt design and implementation. His
consultation and critique of our BitBIt semantics was
invaluable. Lauren Wiener and Barbara Yates built
our work into a usable system by documenting what
color is and how to use it. Kim Rochat ensured the
reliability of our design. And Allen Wirfs-Brock
made BitBIt even faster when it needed to be.

References

[Adobe Systems Inc. 1985] Adobe Systems
Incorporated, PostScript Language Reference
Manual, Reading Mass: Addison-Wesley, 1985.

[Digitalk87] SmalitalkiV EGA Color Extension Kit,
Digitalk, Inc., 1987.

[Foley and Van Dam1982] James D. Foley and
Andries Van Dam, Fundamentals of Interactive
Computer Graphics, Reading Mass:
Addison-Wesley, 1982,

[Gettys et. al1987] Jim Gettys, Ron Newman and
Robert W. Scheiffler, Xlib— C Language X
Interface Protocol Version 11, Massachusetts
Institute of Technology, Cambridge,
Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts, 1987.

[Goldberg and Robson, 1983] Adele Goldberg and
David Robson, Smalltalk-80 The Language and
its Implementation, Reading Mass:
Addison-Wesley, 1982.

[Miranda87] Eliot Miranda, "BrouHaHa-A Portable
Smalltalk Interpreter”, pp. 354-365, Proceedings
of OOPSLA '87, vol. 22, no. 12, SIGPLAN,

December 1987.

[Sun Microsystems, Inc.1987] Sun Microsystems,
Inc., NeWS Manual, Mountain View, California,
March 1987,

[Wirfs-Brock and Miller86] Rebecca J. Wirfs-Brock
and Merlin R. Miller, "A Hardware Architecture
Supporting Color Smalltalk”, Poster Paper at
OOPSLA 1986.

Appendix: Color BitBIt Semantics

Four Forms are involved in the most general BitBIt
case: source, source clipping mask, halftone, and
destination.

Either monochrome or color forms may be specified
for source, halftone, and destination, Eight cases
result. They are specified in the depth case methods
in class BitBltSimulation. The following table
introduces the notation used to describe the eight
cases:

S source pixel value
H halftone pixel value
D destination pixel value
M source clipping mask pixel value
1 single bit per pixel (monochrome)
N multiple bits per pixel (color)
& boolean AND function (pixel & pixel)
r combination rule function (pixel r pixel)
ffilter function (f (pixel))
S stencil function (s (pixel))
m source clipping mask function
(D m effective M)

The combination rule and the boolean AND (&)
functions are binary operators that operate on the
corresponding bits of two pixel values.

The filter and stencil functions use pixel
transformation parameters that specify a variety of
filtering, stenciling, and masking effects. They are
stored in the pixel style derived from the halftone.
The filter function transforms n-bit pixels into 1-bit
pixels. To do this, it uses the instance variable filter
of pixel style. The stencil function transforms 1-bit
pixels into n-bit pixels. To do this, it uses the instance
variables foreground and background of pixel style.

The eight cases are specified below. The name of
each case is intended to Suggest certain uses for the
case. Other uses are certainly possible, however.

In all but two cases (filled and stippled), the boolean
AND function is applied to some version of the
source and halftone. That intermediate result is
termed the effective source. The combination rule
function is then applied to the effective source and
some version of the destination.

In the filled and stippled cases, the boolean AND
function is applied to the source clipping mask and
either the source or the halftone, That intermediate
result is termed the effective source clipping mask.
The combination rule function is applied directly to
the destination and either the source or the halftone.

The source clipping mask must be of depth one and
have the same extent as the source, If
sourceClipMask is nil, then it is considered to be a
black form (all ones) of depth one, and of the same
extent as the source. A destination pixel may be
modified only if the corresponding pixel in the
effective source clipping mask has a value of one.

The pixel style foreground and background values are
used for stenciling. The pixel style filter value is used
for the filter function (stenciled, filtered halftone,
filtered source, and filtered effective source cases).
The plane mask value from the pixel style is used for
all cases except monochrome; it is used for reading in
conjunction with the filter cases and for writing when
the destination is colored (cases stenciled, filled,
stippled, and color mixed).

Case S H D Effective Operation Name

1 1T 1 1 (S&H)rD)mM monochrome

2 1T 1 N s(S&H)rfD)mM stenciled

3 T N 1 ((S&fH)rD)mM filtered halftone

4 1 N N (HrD)m(S&M) filled

5 N 1 1 (fS&H)rD)mM filtered source

6 N 1 N (SrD)m(H&M) stippled .

7 N N 1 (((S&H)rD)mM filtered effective source
8 N N N ((S&H)rD)mM color mixed

We defined BitBltSimulation, a subclass of BitBIt. It
simulates pixel copying for class BitBlIt. It is useful
for debugging in case of a primitive failure with
BitBIt. BitBltSimulation contains an executable
specification of our color BitBlt imaging operation
written almost entirely in Smalltalk code.
BitBltSimulation also operates on Forms whose
depths are not supported by primitive code. Primitive
code implements BitBIt between depth one forms,
forms whose depth matches the Display, and between

forms of depth one and depths the same as the
Display. BitBltSimulation was a very useful aid in
validating primitive BitBlt code during development.
We defined three new primitives in our BitBlt
implementation: color BitBlt, a primitive that returns
the value of a specified pixel for a form, and a
primitive to set a specified pixel within a form. These
pixel accessing primitives operate on forms of any
depth and, incidentally, are used in BitBltSimulation.

