Prof. Dr. Oscar Nierstrasz

Smalltalk-O

Bits of History, Words of Advice

Glenn Krasner, Editor

Xerox Palo Alto Research Center

Addison-Wesley Publishing Company
Reading, Massachusetts * Menlo Park, California
London *« Amsterdam « Don Mills, Ontario * Sydney

This book is in the

Addison-Wesley series in Computer Science
MICHAEL A. HARRISON

CONSULTING EDITOR

Cartoons drawn by Jean Depoian

Library of Congress Cataloging in Publication Data
Main entry under title:
Smalltalk-80 : bits of history, words of advice.

Bibliography: p.

Includes index.

1. Smalltalk-80 (Computer system) I. Krasner,
Glenn. II. Title: Smalitalk-eighty.
QA76.8.8635558 1983 001.64’.25 83-5985
ISBN 0-201-11669-3

Reprinted with corrections, June 1984

Copyright © 1983 by Xerox Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

[SBN 0-201-11669-3
CDEFGHIJ-AL-8987654

Implementing the
Smalltalk-80 System:
The Tektronix

Experience
Paul L. McCullough*

Tektronix, Inc.
Beaverton, Oregon

Introduction

The Tektronix Smalltalk-80 implementation went through a number of
hardware and software phases. Our experience will probably prove to
be similar to that of other research and prototype groups desiring to
implement the Smalltalk-80 system. At best, we will point out some
mistakes to avoid; at the very least we can provide an entertaining view
of our successes and follies.

This paper gives an overview of our initial hardware and software
environments and our initial implementation design. We then present a
fairly detailed account of debugging our first system. Next, we describe
the evolution of our hardware, software, and development tools. We
conclude with some observations and conclusions about the
Smalltalk-80 system and its implications for the future.

Readers should note that we were debugging both our implementa-
tion and the formal specification. Although we detected a number of er-
rors in the formal specification, these errors have since been corrected
and are discussed herein to provide historical perspective.

*Mr. McCullough is currently employed by Xerox Palo Alto Research Center, Palo Alto,
California. Copyright © Tektronix, Inc., 1982. All rights reserved.

59

53 TR T ————

B

60

Implementing the Smalltalk-80 System: The Tektronix Experience

Initial Goals

Initially we had four goals for our Smalltalk-80 work:

¢ Learn about the Smalltalk-80 system, in particular the implemen-
tation of the virtual machine,

» Learn about programming in the Smalltalk-80 language,
* Report on errors in the book draft, and

¢ Implement the virtual machine, realizing that it would not be our
final implementation.

Tektronix had no previous experience with object-oriented software, so
we were very interested in having a system with which we could
interactively program in the Smalltalk-80 language, and in studying
the Smalltalk-80 virtual machine. As part of our agreement with Xe-
rox, we were to use our implementation as a means to detect errors in
the book draft and to identify ways in which the book might be made
clearer. We realized that our initial implementation would suffer from
performance problems, but felt that a timely implementation was more
desirable than a high performance one.

Initial
Hardware

Our initial hardware consisted of:

Motorola 68000 processor (8 MHz)

4 MHz proprietary bus
768 Kbytes of RAM
Tektronix 4025 terminal

A microprocessor development system, used as a file server

The choice of hardware was based on the availability of a Tektronix
designed 68000-based system, along with the need for a large, prefera-
bly linear, address space. We also wanted to use a processor amenable
to the construction of personal workstations. The Tektronix 4025 termi-
nal is a raster graphics terminal, primarily oriented toward drawing
vectors. While our bitmapped display was being designed, the 4025
served as an interim display device. Because the initial Smalltalk-80
virtual image did not depend on the use of a file system, we only used
the microprocessor development system as a file server to load and
store virtual images.

61
Initial Software

e

Software
Development
Environment

Our virtual machine was developed in a cross-compilation environment
using a DECSYSTEM-20. The bulk of the virtual machine was written
in a dialect of the proposed ISO Standard Pascal. This particular dialect
of Pascal supports the independent compilation of modules and pro-
duces assembly language files which are assembled and linked. The re-
sulting executable file is downloaded to the 68000-based system over a
1200 baud serial line. Though the 1200 baud line was an obvious bottle-
neck, the Pascal software already existed on the DECSYSTEM-20 and
we had no desire to port it.

Initial Software

Object Memory
Manager

According to Dan Ingalls: “an operating system is a collection of things
that don’t fit into a language. There shouldn’t be one”!. Taking those
words to heart, we chose to implement our virtual machine on a system
that had no operating system. This choice meant that we could not rely
on runtime services normally provided by an operating system and had
to write those portions that we needed, such as routines to handle
input/output to an RS-232 port and perform IEEE 32-bit floating point
arithmetic.

Our software implementation team consisted of three software engi-
neers. We chose to partition the programming task into three distinct
parts:

* Object Memory Manager
* Interpreter and Primitives

* BitBlt

The initial object memory manager was, for the most part, a strict
translation from Smalltalk-80 to Pascal of the methods presented in the
formal specification. During the translation phase, we noted four minor
typographical errors in the draft of the book involving improper bit
masks, or incorrect variable, constant, or method names. We chose to
implement the reference-counting garbage collector. Later, because the
image creates circular garbage, we added a simple, recursive, mark-
sweep collector. The translation process took less than one week and re-
sulted in a working memory manager that maintained a very clear
boundary between itself and the rest of the virtual machine. As dis-
cussed below, this clear differentiation is both a blessing and a curse.
With minor changes due to different dialects of Pascal, we were able
to run programs that tested the object memory manager on the
DECSYSTEM-20 with its more sophisticated debugging and perform-

B

62

Implementing the Smalltalk-80 System: The Tektronix Experience

Interpreter and
Primitives

ance monitoring software. The test programs read the virtual image,
then made calls to the various entry points in the memory manager.
Then, with Pascal write statements and the debugger, we were able to
examine the state of the object space and determine whether the mem-
ory manager was working correctly. These tests indicated several errors
in the book’s methods: for example, the method that determined where
to find the last pointer of an object was incorrect for CompiledMethods,
and the recursive freer needed an extra guard to prevent Smalllntegers
from being passed off to the pointerBitOf: routine.

At this point, we were able to run test programs that created in-
stances of classes, stored object pointers in other objects, destroyed such
links and thus invoked the deallocation of objects, and performed com-
pactions of the object space. Further testing demonstrated that the
book’s method for swapPointersOf:and: was also incorrect.

In order to speed up the performance of the deallocation portions of
the memory manager, we modified the countDown: routine to call
forAllObjectsAccessibleFrom:suchThatDo: only when the object’s refer-
ence count was going to drop to zero, thus saving a procedure activation
that was usually unnecessary.

A few other minor changes provided us with a memory manager that
was tested on the DECSYSTEM-20. Thus, we had a great deal of assur-
ance that the memory manager would perform correctly on the
68000-based system. Also, we felt that when problems were encountered
in our implementation of the virtual machine, we could concentrate on
looking for the problem in the bytecode interpreter or primitives, and
could ignore the memory manager. In actual practice we made many,
many runs of the virtual machine before any problems were found in
the memory manager. We heartily recommend having a trustworthy
memory manager.

In parallel with the development of the object memory manager, we
coded the bytecode interpreter and primitives. The interpreter and
many of the primitives were written in Pascal. The arithmetic primi-
tives were coded in assembly language in order to simplify the mainte-
nance of the small integer tag bit.

The outer block of the interpreter consists of a call to an initializa-
tion routine and a loop containing a very large case statement that acts
as the bytecode dispatcher. While the memory manager was a fairly lit-
eral translation of the book’s methods, much greater care was exercised
in the construction of the interpreter. Code that in the book was several
message sends was often collapsed into a single Pascal statement. We
included in our interpreter the capability of producing traces which du-
plicate those supplied with the virtual image by Xerox.

In order to give the reader a measure of the complexity of
implementing an interpreter (in Pascal), we present the lengths (in

BitBlt

63

Initial Software

printer pages at 60 lines per page) of some of the major routines. These
figures include the length of tracing code:

» Looking up a message, including the perform: primitive: two and
one-half pages

* Sending a message (including cache lookup): one and one-half
pages

* Executing the current method, including the primitives written in
Pascal: twelve pages

* Returning a value from the active context: one and one-half pages

* The scan characters primitive (used for text composition): three
and one-half pages

» Large integer primitives: four pages

e Process primitives: five pages

We strongly recommend that the first implementation of an interpreter
be in a high-level language. By writing the virtual machine in a high-
level language, implementors gain a more thorough understanding of
the virtual machine as well as a much more quickly completed imple-
mentation.

The BitBIt primitive handles all graphics in the Smalltalk-80 system.
Due to its importance, we decided to have one person concentrate on its
implementation. The routines to implement BitBlt were written in as-
sembly language and closely reflect the structure of the BitBlt methods
in the book. To assist in the debugging of BitBlt, there are many condi-
tionally assembled calls to the Pascal runtime print routines. The main
BitBIt routine accepts one argument, the address of a Pascal record con-
taining the various BitBlt parameters. When called, the routines per-
form the following actions:

¢ Clip the source parameters to the physical size of the source form
« Clip the clipping rectangle to the true size of the destination form
» Clip and adjust the source origin

« Compute the masks necessary for the logical operations

* Check for possible overlap of the source and destination forms

* Calculate the offsets for the starting and ending words

* Copy the bits as appropriate

64

Implementing the Smalltalk-80 System: The Tektronix Experience

Summary of Runs

Certain optimizations are performed for the special cases of clearing,
setting, or complementing the destination forms. BitBIt is approximately
2 Kbytes of assembly code.

We maintained a fairly detailed log of our attempts to get the virtual
machine up and running. The comments we made for each of these
runs may be helpful to future implementors of the virtual machine.

This

summary should provide a sense of the types of errors and prob-

lems one should expect when implementing the virtual machine.

1.

Reached the first send, then encountered an error in a debugging
routine we had written.

Reached the first send again, encountered another error in a
debugging routine.

3. Encountered a Pascal compiler bug.

4, Reached first send of the @ selector, and discovered that we had

transcribed the constant for class Smallinteger incorrectly.

The method specified in the book for initializing the stack pointer
of a new context was incorrect.

6. We forgot to initialize the sender field when creating a context.

7. In the book, the method returnValue:to: caused the reference count

10.

11.

of the sender context to go to zero (thereby making the sender
garbage) just before returning to that context. We had to explicitly
increase the reference count of the sender context, perform the re-
turn, then explicitly decrement the reference count.

We had decided to implement the “common selector” bytecodes
using full message lookup. Unfortunately, the method header for
selector == in class Object did not specify the execution of a
primitive. We patched the image to specify the correct primitive
number.

The first conditional branch we encountered failed because we did
not advance the instruction pointer past the second byte of the in-
struction.

We discovered that the source code for Smallinteger < did not
specify a primitive, resulting in an infinite recursion. We patched
the image again.

Discovered that other methods of class Smallinteger did not have
primitives specified. We retrenched to executing the following se-
lectors without lookup: class, = =, arithmetics, relationals.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

65

Initial Software

Selector at: failed. Our fault, in the routine positive16BitValueOf: a
“>” should have been a “ <.

Multiply primitive failed due to an assembly language coding er-
ror.

All relational primitives written in assembly language had an in-
correct (and uninitialized) register specified.

Made it through the first trace. (Listings of four traces of the in-
terpreter’s internal operations were included with the first distri-
bution of the virtual image. Subsequent distributions included
three traces.)

The book’s method for the primitive value: caused the stack to be
off-by-one.

Once again, we found an error initializing the stack pointer of new
contexts.

Again, the stack pointer is off. These three errors were caused by
an incorrect constant in the book draft.

A message selector was not found. Another run is necessary to de-
termine what happened.

At the beginning of execution for a block, the cached stack pointer
is one too large. In the past, message sends and returns have
worked because the routine that stored the stack pointer
decremented it.

We had coded the at:put: primitive incorrectly: we forgot to have it
return anything, hence the stack was off-by-one.

We incorrectly coded the at:put: primitive with an uninitialized
variable.

The at:put: primitive had a > that should have been a > =.

The Smallinteger bitShift: primitive added in the Smallinteger bit,
but should have Or’ed it in.

Interpreting lots of bytecodes, unfortunately not the correct ones.
Apparently, we took a bad branch somewhere.

We found that the book’s methods for the bytecode “push self” did
not necessarily work for block contexts.

Almost through the fourth trace when the Smallinteger division
primitive failed to clear the high-order half of a register. The er-
ror was detected by a Pascal runtime check.

66

Implementing the Smalltalk-80 System: The Tektronix Experience

28

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Through the fourth trace when Sensor primMousePoint dies be-
cause of a clash between the interpreter and the Pascal runtimes.

We are well beyond the fourth trace when we discover that the
method frame:window:para:style:printing: has a MethodHeader ex-
tension that specifies primitive number 0. We had assumed that
an extension always specified a valid primitive number, but find
that it may also be used to specify a method with more than four
arguments.

We have changed all unimplemented primitives so that they fail,
and now correctly handle primitive 0 in MethodHeader extensions.
By now, we should have something up on the 4025 display, but do
not. Investigating, we find that the book says that the bitmap for
a Form is the first field, whereas the sources say it is the second
field.

We are halftoning the display. We have to make a few adjust-
ments to prevent overrunning the display. Halftoning will take a
long time, approximately two hours. After a while, a runtime ex-
ception was raised by a Pascal support routine that contained a
bug.

The “T” for the TopView window title tab is present on the dis-
play. Interpreter stopped after sending copyTo: to a Smallinteger.

We have disabled halftoning to the 4025, continuing with the
study of the problem of sending copyTo: to a Smallinteger.

The problem is that the BitBlt primitive, copyBits did not return
anything, thus forcing the stack off by one. Similarly, beDisplay,
and beCursor did not return anything. We have added more dis-
play memory to the 4025.

Hurray! “Top View” window title tab is on the screen. Pascal
runtime checks detected an out-of-range scalar while setting up
arguments for copyBits. We have always assumed that BitBlt argu-
ments are unsigned, but that is not so. We were told that BitBIt
should do source clipping, so we will add that to BitBlt.

The entire “Top View” window is on the display, then erased. We
eventually crashed because we are out of object space, but unsure
why.

We are out of object space because the book’s methods for super-
class send was incorrect: another level of indirection is necessary.

We now have “Top View” window, Browser, and Transcript window
on the display. Interpreter stopped when the mouseButtons primi-
tive failed.

39.

40.

41.

42.

43.

44.
45.

46.

67

Initial Software

We turned on halftoning to see what would happen. This was a
mistake because windows are halftoned black and then white. We
decided to reload and try again without halftoning. ’

We have reached the idle loop, checking if the mouse is in any
window. We changed the position of the mouse (by altering two
memory locations) and placed it within the browser. The browser
awoke and refreshed four of its panes. The fifth pane (code pane)
caused an interpreter crash with a Pascal out-of-range error due
to a minor bug in the mod primitive.

Great excitement! We have refreshed the window containing a
“Congratulations!!” message. Eventually we crashed because the
Float < primitive fails. The system tried to put up a Notify win-
dow, but had difficulty because of other primitive failures. Howev-
er, it was able to put up messages in the Transcript window. For a
system that is not yet fully implemented, it is amazingly robust.
We noticed that certain BitBIt operations seem to put up incorrect
information, then erase it. For example, putting up the “Top
View” title tab, the text reads “Top Vijkl” for a short time, and
the incorrect part is then repainted. Investigation showed the
method computeMasks to have a < selector that should have been
a < =, an error carried over from the book.

Generally poking around with the system. We have found that we
need floating point primitives in order for scroll bars to work, so
we have implemented all but the fractionalPart primitive. Rather
than develop an IEEE Floating Point package, we acquired one
from another group at Tektronix. We have also speeded up BitBIt
by using 4010-style graphics commands with the 4025.

We have implemented object memory statistics to report the num-
ber of fetchPointers, storePointers, etc. performed. We have also
added a lookup cache for faster message send processing. A cleri-
cal error in the caching routines crashes the virtual machine.

An uninitialized variable causes the cache to misbehave.

The cache is functioning well. Our initial algorithm is to exclu-
sive-or the Oops of the receiver’s class and the method, then ex-
tract bits 3-7 and index a 256 element array of 8 byte entries. The
interpreter definitely runs faster with the cache. The cache con-
sists of the Oop of the selector, Oop of the receiver’s class, Oop of
the method, the most significant byte of the method header, and
one byte indicating either the primitive index or O.

Tried a new hash function, shifting two bits to the left before the
exclusive-or because we observed that the Oops of different selec-

68

Implementing the Smalltalk-80 System: The Tektronix Experience

Summary of
Initial Software

tors in the same class are very similar to one another. Some
speedup was noted.

47. Another hash function, this time adding the Oops rather than ex-
clusive-oring them. No noticeable change. We did move the mouse
to the first pane of the Browser and crashed the system when the
interpreter passed a Smalllnteger to the memory manager.

48. Further examination of the previous problem shows that we did
not cut the stack back far enough after a value: message. This bug
was carried over into our code from the book, but only appears
when sending value: within an iterative loop.

49. We have fixed value:, now we need to write the perform: primitive.

50. We have installed perform:, but get an infinite recursion because
the floating point package is not IEEE format. We will write one
in Pascal.

51. With the new floating point code, we can now cut text, pop up
menus, and so on. This is great!

At this point, we added some simple performance monitoring code. We
counted the number and type of object memory references, the number
of bytecodes executed, and information concerning the performance of
the lookup cache. For each bytecode executed, an average of just under
10 object memory references were made. The majority were calls to
fetchPointer:, then storePointer:, fetchByte:, and fetchClass:. The various
lookup cache algorithms were found to perform either fairly well (50 to
70% hit rate) or very poorly (20% or worse hit rate). Evidently, caching
algorithms either perform quite well or miserably.

We feel that we were able to implement a relatively complex piece of
software in less than six weeks (that is, from nothing to a working sys-
tem) in less than 60 runs for several reasons:

* We were fortunate to have very good software engineers.
* We had a well-defined task.

e Because it took so long to load the virtual image (about 10 min-
utes) from the file server and so long (again, 10 minutes) to
download our virtual machine from the host, we were very careful
in coding and in analyzing crashes. We were also sharing the hard-
ware with another group, so we made good use of our time on the
machine.

* The specification, though not without error, was well written.

69
The Second Virtual Image

P

The Second
Virtual Image

About this time, we received the second virtual image from Xerox Palo
Alto Research Center (PARC). With this image, the handling of primi-
tive methods was much cleaner, access to BitBlt was improved, the ker-
nel classes were rewritten, and a source code management system was
added. Several significant changes to the virtual machine specification
were made, with the intention that these would be the final modifica-
tions. The second image also made use of the process primitives, while
the first image did not.

Because a general cleanup of our interpreter seemed a good idea, and
because a fair amount of the interpreter needed to be changed to sup-
port processes and new primitive numbers, we rewrote much of it. A
history of our runs for the second virtual image follows:

1. We got our “Initializing . . .” message, and the system crashed be-
cause we were trying to initialize the cursor frame buffer. Since
our bitmap display was not yet available, the presence of this code
was premature.

2. We are through one-third of the first trace, but a conditional
branch bytecode branched the wrong way.

3. Several problems noted:

¢ Metaclass names no longer print properly on our traces.

» We encountered off-by-one errors in stack operations while han-
dling bytecode 187 because we forgot to adjust the stack index.

e We encountered off-by-one errors in stack operation for
Smallinteger //.

* QOur trace does not print operands for Smalllnteger * properly.

* We need to carefully check the code for all stack operations.

4. M68000 stack overflow causes parity errors.

5. We are through trace 1, and three-quarters through trace 2 when
Pascal detects an out-of-range scalar because the routine
returnValue:to: returned to a deallocated block context. We had
failed to increase a reference count.

6. We are almost halfway through trace 3 when we hit an
unimplemented process primitive. We also noticed the primitive
return of an instance variable did not pop the receiver, thus caus-
ing the stack to be off-by-one.

70
Implementing the Smalltalk-80 System: The Tektronix Experience

7. We are about 60% through trace 3 when we try to add nil to an
instance of class Rectangle. Caused by our coding error: when a di-
rect execution send fails, we fail to tidy up the stack pointer.

8. We find that we need to implement the process primitives.

9. BitBlt fails to clear the high-order bits of a register causing a crash
on the 21380th message sent.

10. Sending the selector + to an Array fails. Stack is off-by-one be-
cause the copyBits primitive failed to return self.

11. We find that the resume: primitive does not work due to an
uninitialized variable.

12. More problems with resume;, it fails to set a boolean.

13. More problems with the resume: primitive: the process to be re-
sumed has nil as its instruction pointer because the initial instruc-
tion pointer is not set in primitiveBlockCopy.

14. The resume: primitive works finally! Unfortunately, the wait prim-
itive does not because of an incorrectly coded branch.

15. The wait primitive works, and we are through the third trace cor-
rectly. We forgot to code the setting of the success boolean for
primitive become:, so a notify window is created.

16. Fired up the system. We have executed more than 15,000,000
bytecodes and it is still alive!

In order to improve performance, we made many changes to the inter-
preter and the memory manager. Changes to the interpreter included
the caching of absolute addresses in the interpreter, thus employing
considerably fewer calls to the memory manager. For example, to ex-
tract the fields of a source form, rather than a fetchPointer call to the
memory manager for every field, the interpreter merely cached an ab-
solute address and stepped through a range of offsets. Within the mem-
ory manager, many procedure calls were replaced with macro calls that
were expanded by a macro preprocessor. Not only did this save the
overhead of procedure calls, but quite often allowed common
subexpression elimination to occur, thus actually decreasing the
amount of compiler-generated code.

We also sped up certain parts of the interpreter based on where we
believed the interpreter was spending its time. With these optimiza-
tions, performance is approximately 470 bytecodes a second.

An observation: Utilizing a raw computer (that is, one without an
underlying operating system) to implement a Smalltalk-80 system is a
double-edged sword: on the one hand, you can place data structures and

71
Performance Modeling Tool

code anywhere in the system, and you have complete control of the
hardware. On the other hand, the lack of performance monitoring tools
and underlying file systems can be a problem because it takes time to
implement them, rather than just interfacing to them.

Second Version
of the Hardware

At about this time, we added floppy disks to the system, as well as a
utility program that could save and restore arbitrary memory locations
on the disks, thus freeing us from the microprocessor development sys-
tem file server. The 10 minute delay for the loading of a virtual image
was reduced to about 45 seconds. A more dramatic change to the hard-
ware was the addition of our bitmap display. No longer would we have
to translate bitmap operations to vector drawing commands on the
4025, nor wait for a window to be halftoned. We also added a standard
Tektronix keyboard and a mouse. In order for the mouse and keyboard
(as well as portions of the Smalltalk-80 software) to work, we also added
a one millisecond timer interrupt.

As part of another project, a new M68000 processor board was made
available to us. Recall that the bus that we were using ran at 4 MHz,
which introduced wait states into the M68000. The new processor board
used a one longword data cache and a one longword instruction cache
to reduce bus requests. This resulted in a 70% speedup in system per-
formance, to approximately 800 bytecodes per second.

The Third
Virtual Image

At this point, our goal became to build a virtual machine that was
clearly faster (approximately 4000 bytecodes per second), but to do it
quickly and at relatively low expense. The method we chose was to de-
velop a performance analysis tool and, using the results of the measure-
ments, to rewrite time consuming portions of the virtual machine in
assembly language. The following sections summarize our findings and
our techniques for speeding up the virtual machine.

Performance
Modeling Tool

To monitor the execution of the virtual machine, we developed a simple
analysis tool that was called by the one millisecond timer interrupt rou-
tine. Each time it was called, it stored the value of the interrupted

72

Implementing the Smalltalk-80 System: The Tektronix Experience

M68000 program counter. By changing a memory location, a routine
could be activated to print a histogram showing ranges of program
addresses, the number of times the program counter was found to be
within the range, and the percentage of time spent within the range.
The size of the address range for each line of the histogram was
selectable by the user. We mapped routine addresses to these ranges so
that the histogram showed time spent in each routine. This tool proved
to be invaluable in speeding up the virtual machine.

Prior to utilizing this tool, we decided to measure how much time
was spent in the interrupt service routine. The Smalltalk-80 virtual
machine expects a timer interrupt every millisecond and the routine
checks the mouse and keyboard motion registers. If a change has oc-
curred, the routine makes note of the change so that the bytecode dis-
patch loop can create a Smalltalk-80 event. Like much of our virtual
machine, our timer interrupt routine was initially written in Pascal.
Because the interrupt routine has many basic blocks, and the optimizer
of the Pascal compiler operates only upon one basic block at a time, the
interrupt service routine spent a great deal of time reloading registers
with previously loaded values. We discovered that an amazing 30% of
the M68000 cycles were going to the interrupt service routine! One of
the first optimizations that we performed was to take the Pascal com-
piler-generated code and to perform flow analysis on it. The new inter-
rupt service routine consumed 9% of the M68000 cycles. Future plans
call for hardware to track mouse and keyboard events, and for timers to
interrupt the M68000 only when necessary (for example, when an in-
stance of class Delay has finished its wait period).

The Results of
Performance
Monitoring

The performance monitoring tool showed us some statistics that were
surprising to us (the percentage figures presented below do not include
time spent in the interrupt service routine nor the performance moni-
toring tool). Approximately 70% of the M68000 cycles were being spent
in the memory manager, 20% in the interpreter and primitives, and
10% in BitBIt. The bulk of the time in the memory manager was spent
in only a few routines: fetchPointer:ofObject:, storePointer:0fObject:-
withValue:, fetchClassOf:, countUp:, countDown:, and two sets of routines
generally referred to as the recursive freer and the niller. Previous sta-
tistics we gathered had indicated that fetchPointer:ofObject: and store-
Pointer:ofObject:withValue: were popular routines, but they were rela-
tively short and (so it seemed) should consume relatively little processor
time.

73

The Results of Performance Monitoring

Looking at the Pascal-generated code, we felt that we could do far
better with assembly language, and we recoded all memory manager
routines that the interpreter and primitives could call directly.
Recoding fetchPointer:ofObject: resulted in a 4.5% speedup. Next, we
recoded storePointer;0fObject:withValue: and achieved an additional 13%
speedup. The major difference between these two routines is in refer-
ence counting: when storing pointers, reference counts must be updated;
when fetching pointers they do not. Although we had previously con-
cluded that reference counting was an expensive operation, we now had
measurements of just how expensive. After recoding in assembly lan-
guage all the routines callable by the interpreter and primitives, the
system was an aggregate 19% faster.

Next, we considered routines that were private to the memory man-
agement module. From the histograms, it was obvious that we spent a
great deal of time initializing just-instantiated objects to nil pointers (or
zeroes for non-pointer objects). This inefficiency again arose from the
strict basic block analysis of the Pascal compiler. For the price of a pro-
cedure call to an assembly language routine, we were rewarded with a
speedup of nearly 10%.

Another major change to the memory manager came in the area of
the so-called recursive freer. When an object’s reference count drops to
zero, this set of routines is activated to decrement the reference counts
of the object’s referents and, should their counts drop to zero, recursive-
ly free them. The first attempt at speeding up this process was done in
Pascal and resulted in nearly a 10% speedup. Later on, we rewrote the
recursive freer again in assembly language achieving an additional
speedup.

The instantiation of objects was also expensive because several proce-
dure calls were made. We rewrote this code (still in Pascal), collapsing
several procedures into one. Later, the instantiation routines were re-
written in assembly language.

Changes to the interpreter and primitives were done in an interest-
ing manner. Recall that we had a functioning, albeit slow, interpreter.
With the belief that it is far better to change one thing at a time, rath-
er than everything at once, we modified a small portion of the inter-
preter and tested the change. Once the change was shown to be
satisfactory, we changed another part of the interpreter.

Initially, we rewrote the bytecode dispatch routine, but, in keeping
with our philosophy of small changes, none of the bytecode interpreta-
tion routines. Thus, the assembly language bytecode dispatch routine
set a boolean indicating that the assembly language dispatch had failed
and that the Pascal routine would have to take over. Then we added
bytecode interpretation routines, more or less one at a time. Eventually,
we were able to discard the Pascal dispatch loop and bytecode inter-
preters completely.

74

Implementing the Smalltalk-80 System: The Tektronix Experience

Once all the bytecode interpretation routines were completed, we
turned our attention to the primitive routines. These changes were ac-
complished in a similar manner: initially, all assembly language primi-
tives failed, forcing the Pascal-coded primitives to run. We would then
select a primitive, code it in assembly language, and test it. Once it was
found to be acceptable, we selected another primitive to re-code. Final-
ly, the Pascal primitives were discarded. Rather than call high-frequen-
cy primitive routines, we included many of them in-line.

In order to save some procedure calls to the memory manager when
instantiating objects, the interpreter first tries to directly acquire the
new object off the free lists. If the attempt fails, the interpreter calls
the memory manager. Such “fuzzing” of the line between the pieces of
the virtual machine seem necessary to achieve acceptable performance
on current microprocessors. This demonstrates how a clear boundary
between the memory manager and the rest of the virtual machine is
both a blessing and a curse.

The changes to the memory manager and interpreter eventually re-
sulted in a 3500 bytecode per second system.

The Third and
Fourth Images

Our technique of making incremental changes to the virtual machine
enabled us to use a working system and to bring up new virtual images
as they were received from Xerox. A log of the attempts to run the
third image follows:

1. At Xerox, the display bitmap is simply an object in the object
space. In our implementation, the display bitmap lives at a specif-
ic address, and we encountered a problem because this image
sends the become: primitive to the current display object. We
modified our code in the become: routine.

2. We encountered a Pascal subscript-out-of-range error. The routine
that returns instance variables was coded incorrectly, due to an
error in the book’s specification.

3. There are some new primitives related to the Xerox implementa-
tion in the image. We modified our interpreter to understand
them.

4. A bit of Smalltalk folklore: “If 3 + 4 works, everything works.”
We typed 3 + 4 into a window and executed it..It did not work be-
cause the Smalllnteger size message returned the wrong result.

[SUR———

75

Some Observations

5. Executing “Circle exampleOne” causes infinite recursion because
the graphics classes were coded incorrectly by Xerox. They had
not noticed this problem because the Xerox implementation of
primitive new: did not comply with the formal specification,
allowing their code to execute.

6. The system is up and working.

The fourth image was brought up on the first attempt.

Some If we analyze the coding errors that we encountered in our various im-
Observations plementations, we find that most fall into the following categories:
* Off-by-one errors

» Failing to return the correct object, or failing to return any object
(leading to off-by-one errors)

Conditional branch reversals

¢ Errors in the specification

Perhaps the most painful part of debugging a virtual machine is finding
the off-by-one errors. These errors typically arise in primitive handling
and in the stack activation records. Certain primitives may fail, and
Smalltalk-80 methods are expected to take over. During the develop-
ment of the virtual machine, it is quite common to damage the object
references on the stack or to misadjust the stack pointer resulting in
off-by-one errors. When returning from a procedure call in many stack
machines (the M68000 is an example), if the processor’s stack has an
extra argument or does not have a return value, the correct return ad-
dress will not be found, and the processor will return to an erroneous
location. The typical result is a system crash. In the Smalltalk-80 virtu-
al machine, the return address (actually the sender field) of the activa-
tion record (an instance of either class MethodContext or class
BlockContext) is always in a known place, and a correct return can al-
ways be made and the machine will definitely not crash. Nonetheless,
the interpreter (or primitives) may have pushed an incorrect result val-
ue or left garbage on the stack. Only later will this type of error mani-
fest itself. These errors can be time-consuming and relatively difficult
to find.

Errors resulting from conditional branch reversals are common, and
are not further discussed here.

76

Implementing the Smalltalk-80 System: The Tektronix Experience

We certainly found our share of errors in the specification of the
Smalltalk-80 virtual machine. This statement should not be taken as an
affront to the Software Concepts Group at Xerox PARC. They were
both developing and documenting two complex software products (the
Smalltalk-80 system itself and the underlying virtual machine), and it
was our job to point out discrepancies. Indeed, they produced an
amazingly well constructed software system, and future implementors
should have fewer problems with their own implementations.

We have programmed very few application programs in the
Smalltalk-80 language. However, we do have one very definite data
point in this area. Our file system (see Chapter 16) was totally devel-
oped in the Smalltalk-80 system and in a relatively short time period.
All debugging was done using the Smalltalk-80 system: we never used
the Pascal or assembly language debugging tools.

A final observation: the routines collectively known as primitives are
about one-third to one-half of the implementation effort. Bear this in
mind when scheduling an implementation.

Conclusions

Our work with the Smalltalk-80 system has shown it to be a robust,
well-engineered piece of software. The initial, albeit incomplete, virtual
machine required six weeks of effort by three software engineers, pri-
marily using a high-level language. This resulted in a slow but useable
system. By monitoring where the virtual machine spent its time, we
were able to construct a system with adequate performance. For first-
time implementors, we heartily recommend a similar approach.

Without question, the Smalltalk-80 system will have a strong impact
on many areas of computer science, including language design, system
architecture, and user interfaces. Perhaps most importantly, the system
and language cause the user to think about problems in new ways.

Acknowledg-
ments

Many people contributed to our Smalltalk-80 effort. Allen Wirfs-Brock
designed and implemented the Pascal-based interpreters and primitives
and the initial assembly language enhancements. Jason Penney
designed and implemented BitBIt, the floating point package, the floppy
disk driver, and the assembly-enhanced interpreters. Joe Eckardt
designed our excellent bitmap display and has made interesting modifi-
cations to the Smalltalk-80 code. Tom Kloos and John Theus designed

77

References

and maintained our M68000 system, as well as the interface to the
mouse, keyboard, and floppy disks. Allen Otis graciously shared his
hardware with us in the early days of the project and made some of the
first measurements of the virtual machine. Larry Katz made many sug-
gestions for the improvement of the book and served as our unofficial
kibitzer during the implementation and provided much food for
thought. We would like to acknowledge the various managers (Jack
Grimes, Don Williams, Dave Heinen, George Rhine, and Sue Grady)
who had the foresight and wisdom to allow us to work on the project.
Glenn Krasner, of Xerox PARC, provided answers to our questions and
provided us with ideas for speeding up our implementation. And, we
would like to thank Adele Goldberg and the Software Concepts Group
of Xerox PARC for including us in the book review and implementation
process. Without them, we would have naught.

References

1. Ingalls, Daniel H. H., “Design Principles Behind Smalltalk”, Byte
vol. 6, no. 8, pp. 286-298, Aug. 1981.

JRENN S N

