Prof. Dr. Oscar Nierstrasz

Smalltalk-O

Bits of History, Words of Advice

Glenn Krasner, Editor

Xerox Palo Alto Research Center

Addison-Wesley Publishing Company
Reading, Massachusetts * Menlo Park, California
London *« Amsterdam « Don Mills, Ontario * Sydney

This book is in the

Addison-Wesley series in Computer Science
MICHAEL A. HARRISON

CONSULTING EDITOR

Cartoons drawn by Jean Depoian

Library of Congress Cataloging in Publication Data
Main entry under title:
Smalltalk-80 : bits of history, words of advice.

Bibliography: p.

Includes index.

1. Smalltalk-80 (Computer system) I. Krasner,
Glenn. II. Title: Smalitalk-eighty.
QA76.8.8635558 1983 001.64’.25 83-5985
ISBN 0-201-11669-3

Reprinted with corrections, June 1984

Copyright © 1983 by Xerox Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

[SBN 0-201-11669-3
CDEFGHIJ-AL-8987654

Design Decisions for
Smalltalk-80
Implementors

Allen Wirfs-Brock

Tektronix, Inc.
Beaverton, Oregon

Abstract

The Smalltalk-80 virtual machine specification describes the required
behavior of any Smalltalk-80 interpreter. The specification takes the
form of a model implementation of a Smalltalk-80 interpreter. An
implementor of a Smalltalk-80 interpreter is not required to exactly
copy the data structures and algorithms of the model interpreter. The
only requirement is that any Smalltalk-80 interpreter exhibit external
behavior which is identical to that described by the formal specification.
The implementor is free to make design tradeoffs that may increase the
performance of the implementation while preserving the required ex-
ternal behavior. This paper identifies some of the design decisions
which face a Smalltalk-80 implementor and discusses several design
trade-offs.

Introduction

The Smalltalk-80 virtual machine specification as it appears in
Smalltalk-80: The Language and Its Implementation' describes the re-
quired low level behavior of any Smalltalk-80 implementation. The

Copyright © Tektronix, Inc. 1982. All rights reserved.
41

42

Design Decisions for Smalltalk-80 Implementors

specification takes the form of a Smalitalk-80 “program” which exhibits
this behavior. One approach to the implementation of a Smalltalk-80
interpreter is to literally translate this program into some appropriate
implementation language. While this approach will result in an inter-
preter which exhibits the required behavior, the performance of the re-
sulting interpreter may be unsatisfactory.

An alternate implementation approach is to construct an interpreter
that uses algorithms and data structures which differ from those used
in the formal specification. These would be chosen to optimize perfor-
mance for the host implementation environment. Such an interpreter
may achieve higher performance but requires greater implementation
effort.

This paper presents an overview of the design decision space which
confronts the implementors of Smalltalk-80 interpreters. Specifically, it
examines some of the potential design trade-offs concerning the host
hardware and implementation language, the interpreter data struc-
tures, the actual execution of Smalltalk-80 instructions, and the cre-
ation and destruction of objects. Even though the design issues are
examined assuming an interpreter implementation utilizing a conven-
tional computer or microprocessor as a host, many of the trade-offs
should be applicable to a microcoded or hardware implementation.

The Formal
Specification

The first part of the Smalltalk-80 virtual machine specification defines
the virtual machine architecture. This includes the definition of the
primitive data types, the instruction set, and the interface to the cbject
memory manager. The second part describes the internal operation of
the object memory manager. An implementation of the Smalltalk-80
virtual machine is commonly referred to as a Smalltalk-80 interpreter.
The formal specification completely defines the required behavior of a
Smalltalk-80 interpreter.

The formal specification takes the form of a collection of
Smalltalk-80 methods which implement a Smalltalk-80 interpreter. It
is, in effect, an implementation of a “model interpreter.” Within this
model the “registers” of the virtual machine are represented as
Smalltalk-80 instance variables, the data structures are explicitly de-
fined via constant field offsets and bit masks, and the required seman-
tics of the interpreter are implicit in the behavior of the methods. The
model bytecode interpreter implementation can be viewed as the defini-
tion of the correct behavior of a Smalltalk-80 implementation.

Figure 4.1

43
The Formal Specification

The specification does not place any particular requirements upon
the internal implementation of the object memory manager. Of course,
it assumes that any implementation will correctly preserve stored data
and that this data will be available to the interpreter when requested.
The memory manager implementation chapter may also be viewed as a
model for how an object memory manager may be implemented.

An implementor of a Smalltalk-80 interpreter must design and con-
struct an interpreter whose behavior conforms to that defined by the
formal specification. One method of accomplishing this is to directly
translate the Smalltalk-80 methods of the model implementation into
an appropriate implementation language. One might even consider us-
ing a program to perform this translation. Figure 4.1 gives an example
of a method from the formal specification and Figure 4.2 shows how it
might be translated into Pascal.

The principal advantage of the direct translation approach is that it is
a simple method of obtaining a semantically correct interpreter. It also
is a very good way for an implementor to learn how the interpreter
works internally. The principal disadvantage associated with this ap-
proach is that the resulting interpreter may exhibit disappointing per-
formance levels. The data structures and algorithms of the book’s
interpreter were selected to provide a clear definition of the required be-
havior; they will probably not be optimal for any particular host com-
puter. The challenge for a Smalltalk-80 implementor is to design an
interpreter which will yield acceptable performance within some particu-
lar host environment. At Tektronix, we utilized the direct translation
approach (see Chapter 5) and were able to very quickly build a working
(but slow) Smalltalk-80 implementation. Experience gained from this
initial implementation enabled us to later design a significantly im-
proved second generation interpreter.

initializeGuaranteedPointers
” Undefined Object and Booleans ”
nilPointer « 2.
falsePointer — 4,
truePointer — 6.
“andsoon..”

pushConstantBytecode
currentBytecode = 113 ifTrue: [fself push: truePointer].
currentBytecode = 114 ifTrue: [tself push: falsePointer].
currentBytecode = 115 ifTrue: [tself push: nilPointer].
currentBytecode = 116 ifTrue: [Tself push: minusOnePointer].
currentBytecode = 117 ifTrue: [Tself push: zeroPointer].
currentBytecode = 118 ifTrue: [tself push: onePointer].
currentBytecode = 119 ifTrue: [Tself push: twoPointer].

44

Design Decisions for Smalltalk-80 Implementors

const
fUndefined Object and Booleans}
nilPointer = 2;
falsePointer = 4;
truePointer = 6;
fand so on ...}
procedure pushConstantBytecode;
begin
case currentBytecode of
113: push(truePointer);
114: push(falsePointer);
115: push(nilPointer);
116: push(minusOnePointer);
117: push(zeroPointer);
118: push(onePointer);
119: push(twoPointer);
end {case}

Figure 4.2 end {pushConstantBytecode};
The Host The first major design decision which will confront a Smalltalk-80
Processor implementor will be the choice of the hardware which will host the im-

plementation. In many situations the implementor will have little free-
dom in this area. Where the implementor has the freedom to select the
host processor, there are a number of considerations which should enter
into the decision process.

A processor which is to host a Smalltalk-80 interpreter should be
fast. An interpreter which executes 10,000 bytecodes per second may be
perceived by a Smalltalk-80 programmer to be quite slow. The original
Tektronix implementation, which could execute 3500 bytecodes per sec-
ond, was considered to be just barely usable. The Xerox Dolphin imple-
mentation executes 20,000 bytecodes per second and is considered to
have “adequate” performance, while the Xerox Dorado at 400,000
bytecodes per second has excellent performance (see Chapter 9). At
10,000 bytecodes per second the interpreter will have, on the average,
only 100 microseconds in which to fetch, decode, and execute each
bytecode. At a more acceptable performance level of 100,000 bytecodes
per second, the interpreter will have only 10 microseconds for each
bytecode.

A Smalltalk-80 host processor architecture must support a large
amount of main memory (either real or virtual). The standard
Smalltalk-80 virtual image consists of approximately 500,000 bytes of

45
The Implementation Language

Smalltalk-80 objects. To this must be added the space for interpreter,
the interpreter’s data structures, the display bitmap, and additional
space to contain objects created dynamically as the system runs. The to-
tal requirements of the system will easily approach one million bytes of
memory with even a modest application. Although it may be possible to
configure a virtual image with fewer features and more modest memory
requirements, this can be most easily done utilizing an operational
Smalltalk-80 system. For this reason, the implementor will need a de-
velopment system with at least 1 megabyte of main memory.

By caching a number of variables which represent the execution
state of a Smalltalk-80 method in internal registers, an implementation
will probably get dramatically improved performance. A good host pro-
cessor should have sufficient internal registers to allow these values to
be cached in its registers. The exact number of registers needed to con-
tain cached values will depend upon the specifics of the interpreter de-
sign. However, as a general rule, 8 is probably not enough while 32 is
probably more than enough. For example, one of our implementations
for the Motorola 68000 processor could have easily made use of several
more than the 15 registers which were available.

Smalltalk-80 interpreters frequently look up values in tables and fol-
low indirect references. For this reason it is desirable that the host pro-
cessor provide good support for indexed addressing and indirection.

Hardware support for the Smalltalk-80 graphics model is another
major consideration. Smalltalk-80 graphics is entirely based upon the
manipulation of bitmaps. Although some implementations have simu-
lated this model using other display technologies (for example, by using
a vector oriented raster terminal), the results have been less than satis-
factory (see Chapter 5). Acceptable results will only be achieved if an
actual hardware bitmapped display is provided. A frequent concern of
new implementors is the performance of BitBIt, the bitmap manipula-
tion operation. One concern is whether specific hardware support will
be required for this operation. Our experience with the 68000 was that
adequate BitBlt performance was easy to achieve with straightforward
coding, while adequate bytecode interpreter performance was very diffi-
cult to achieve. This leads us to believe that a host processor capable of
achieving adequate performance when interpreting bytecodes will prob-
ably perform adequately when BitBlt-ing. In particular, the processor’s
ability to perform shifting and masking operations will affect the over-
all performance of BitBIt.

The
Implementation
Language

The choice of an implementation language for a Smalltalk-80 interpret-
er is typically a trade-off between the ease of implementation of the in-
terpreter and the final performance of the system. Implementors should

46

Design Decisions for Smalltalk-80 Implementors

consider using a high-level programming language as the first imple-
mentation tool. A high-level language based interpreter can be quickly
implemented and should be relatively easy to debug. Unfortunately, the
final performance of such implementations may be disappointing. This
may be the case even if a very good optimizing compiler is used.

It is generally accepted that the code generated for a large program
by an optimizing compiler will be “better” than that which a human
assembly language programmer would write for the same problem.
Conversely, for short code sequences, a human programmer can usually
write better code than that generated by an optimizing compiler. Al-
though a Smalltalk-80 interpreter may appear to be a complex piece of
software, it is actually a relatively small program. For example, our as-
sembly language implementation for the Motorola 68000 contains ap-
proximately 5000 instructions. Furthermore, a large portion of the
execution time tends to be spent executing only a few dozen of the in-
structions. These instruction sequences are short enough that carefully
written assembly code can achieve significantly better performance
than optimized compiler generated code. Our 68000 bytecode dispatch
routine consists of five instructions, while the bodies of many of the
push and pop bytecodes consist of only one or two instructions.

A successful Smalltalk-80 interpreter design will consist of an effi-
cient mapping of the virtual machine architecture onto the available
resources of the host processor. Such a mapping will include the global
allocation of processor resources (registers, preferred memory locations,
instruction sequences, etc.) for specific purposes within the interpreter.
An assembly language programmer will have complete freedom to
make these allocations. Such freedom is typically unavailable to a high-
level language programmer who must work within a general purpose
resource allocation model chosen by the designers of the compiler.

Object Pointer
Formats

The most common form of data manipulated by a Smalltalk-80 inter-
preter are Object Pointers (commonly referred to as Oops). An Oop rep-
resents either an atomic integer value in the range -16,384 to 16,383 or
a reference to some particular Smalltalk-80 object. The formal specifi-
cation uses a standard representation for Oops. This representation de-
fines an Oop to be a 16-bit quantity. The least significant of the 16 bits
is used as a tag which indicates how the rest of the bits are to be
interpreted. If the tag bit is a 0 then the most significant 15 bits are
interpreted as an object reference. If the tag bit is a 1 then the most
significant 15 bits are interpreted as a 2’s complement integer value.

47
Object Pointer Formats

Note that the size of an Oop determines both the total number of ob-
jects which may exist at any time (32,768) and the range of integer val-
ues upon which arithmetic is primitively performed.

Because Oops are used so frequently by the interpreter, their format
can have a large impact upon the overall performance of the interpret-
er. The most common operations performed upon Oops by the interpret-
er are testing the tag bit, accessing the object referenced by an Oop,
extracting the integer value from an Oop, and constructing an Oop
from an integer.

Even though the standard Oop format pervades the formal specifica-
tion, use of a different format will not violate the criteria for confor-
mance to the specification. This is possible because the internal format
of an Oop is invisible to the Smalltalk-80 programmer.

There are several possible alternative Oop formats which may offer
varying performance advantages. One alternative is to change the posi-
tion of the tag bit.

Placing the tag bit in the least significant bit position (the position in
the standard Oop format) is most appropriate for a processor which re-
flects the value of this bit in its condition codes. This is the case for the
Xerox processors? upon which the Smalltalk-80 system was originally
developed, and for some common microprocessors. Using such a proces-
sor, the tag bit is automatically “tested” each time an Oop is accessed.
A simple conditional branch instruction can then be used by the inter-
preter to choose between integer and object reference actions. Proces-
sors which lack this feature will require a more complex instruction
sequence, shifting the Oop, a masking operation, and comparison to per-
form the same test.

Placing the tag in the most significant bit position causes the tag to
occupy the sign-bit position for 16-bit 2’s complement processors. For a
processor that has condition codes which reflect the value of the sign
bit, a test of the tag becomes a simple branch on positive or negative
value.

Other factors which will affect the tag bit position might include the
relative performance cost of setting the least significant bit as opposed
to the most significant bit (is adding or logical or-ing a 1 less expensive
than the same operation involving 32,768) for converting an integer
into an Oop, and the relative cost of shifts as opposed to adds for con-
verting Oops into table indices.

The standard format uses a tag bit value of 1 to identify an integer
value and a tag bit value of 0 to identify an object identifier. Inverting
this interpretation has potentially useful properties, some of which are
also dependent upon the choice of tag bit position. For example, if a tag
value O is used to indicate an integer valued Oop and the tag occupies
the least significant bit position, then Smallinteger values are, in eifect,
2’s complement values which have been scaled by a factor of 2. Such

48

Design Decisions for Smalltalk-80 Implementors

values can be added and subtracted (the most common arithmetic oper-
ations) without requiring a conversion from the Oop format and the re-
sult will also be a valid Smallinteger Oop. Only one of the operands of a
multiplication operation will need to be converted from the QOop format
for the operation to yield a valid Smallinteger Oop.

If a tag value of O is used to indicate object identifier Oops and the
tag occupies the most significant bit position, then object identifier Oops
can serve as direct indices into a table of 8-bit values on byte address-
able processors. This would allow reference counting to be implemented
using an independent table of 8-bit reference-count values which is di-
rectly indexed using Oops. For a word addressed processor, the standard
format allows Oops to be used to directly index a 2 word per entry ob-
ject table.

The Object
Memory

The object memory implementation described in the formal specifica-
tion views the object memory as being physically divided into 16 physi-
cal segments, each containing 64K 16-bit words. Individual objects
occupy space within a single segment. Object reference Oops are trans-
lated into memory addresses using a data structure known as the Ob-
ject Table. The object table contains one 32-bit entry for each of the
32K possible object referencing Oops. Each object table entry has the
following format:

Bits 0-15 (le): The word offset of the object within its segment
Bits 16-19: The number of the segment which contains the object
Bit 20: Reserved

Bit 21: Set if the Oop associated with this entry is unused
Bit 22: Set if the fields of this object contain Oops

Bit 23: Set if object contains an odd number of 8 bit fields
Bits 24-31 (msb): This object’s reference count

For each segment there is a set of linked lists which locate all free
space within the segment. In addition there is a single list which links
all unassigned Oops and object table entries. Objects are linked using
Oop references.

The above design includes several implicit assumptions about the
memory organization of the host processor. It assumes that the unit of
memory addressability is a 16-bit word. It assumes that the processor
uses a segmented address space and that each segment contains 64K

49
The Object Memory

words. Finally, it assumes that at most 1024K words (16 segments) are
addressable. This organization may be considerably different from that
of an actual host processor. Many processors support a large, byte ad-
dressable, linear address space. Although the formal specification’s de-
sign can be mapped onto such a memory organization, such a mapping
will result in reduced interpreter performance if it is carried out dy-
namically.

An object memory design will consist of two inter-related elements,
the organization of the actual object space and the format of the object
table. The goal of the design will usually be to minimize the time re-
quired to access the fields of an object when given an Oop. However, if
main memory is limited, the goal of the design may be to limit the size
of the object table. A performance oriented object table will usually be
represented as an array which is directly indexed by Oops (or a simple
function on Oops). A hash table might be used for a space efficient ob-
ject table representation3.

The most important component of an object table entry is the field
which contains the actual address of the associated object within the
object space. Ideally this field should contain the physical memory ad-
dress of the object represented so that it may be used without any
masking or shifting operations. Such a format will permit the contents
to be used to directly address the associated object, either by loading
the field into a processor base register or by some type of indirect ad-
dressing mechanism. In this case, the size of the address field will be
the size of a physical processor address.

If the host processor’s physical address is larger than the 20-bits used
in the formal specification, the size of an object table entry will have to
be increased beyond 32-bits or the size of the reference count and flag
bits will have to be decreased. Since Oops are typically used as scaled
indexes into the object table, it is desirable that the size of an object ta-
ble entry be a power-of-two multiple of the processor’s addressable word
size so that object table offsets may be computed by shifting instead of
multiplication. For most conventional processors, 64-bits (8 bytes, four
16-bit words, two 32-bit words) would be the next available size. Howev-
er, a 64-bit object table entry will require 256K bytes and will probably
contain many unused bits. An alternate approach is to use separate
parallel arrays to hold the address fields and the reference count/flag
fields of each entry. This results in an effective entry size which is
greater than 32-bits without requiring a full 64-bit entry. Decreasing
the size of the reference-count field is another valid alternative. Since
most reference count values are either very small (8 or less) or have
reached the overflow value where they stick!, a reference-count field
size of 3 or 4 bits should be adequate. The main consideration will be
whether the host processor can efficiently access such a field.

50

Design Decisions for Smalltalk-80 Implementors

The Bytecode
Interpreter

The bytecode interpreter performs the task of fetching and executing
individual Smalltalk-80 bytecodes (virtual machine instructions). Before
examining the actual functioning of the bytecode interpreter, we will
consider the general question of time/space trade-offs within Small-
talk-80 implementations. A complete, operational Smalltalk-80 system
requires approximately one million bytes of storage to operate. The ac-
tual interpreter will occupy only a small fraction of this. (Our first im-
plementation, which was very bulky, required approximately 128K
bytes for the interpreter. A later assembly language implementation for
the same host needed less than 25K bytes.) Since Smalltalk-80 inter-
preters seem to strain the computational resources of conventional pro-
cessors, most interpreter designs will tend towards reducing execution
time at the expense of increasing the total size of the implementation.

The model implementation in the formal specification takes an algo-
rithmic approach to interpretation. The interpreter fetches a bytecode,
shifts and masks it to extract the operation code and parameter fields,
and uses conditional statements to select the particular operation to be
performed. While this approach is quite effective for illustrating the
encoding of the bytecodes it is often not suitable for a production inter-
preter because of the computation required to decode each bytecode. A
more efficient implementation technique for the bytecode dispatch oper-
ation may be to use the bytecode as an index into a 256-way dispatch
table which contains the addresses of the individual routines for each
bytecode. For example, rather than using one routine, as in the exam-
ple in Fig. 3.1, there could be seven individual routines, each one opti-
mized for pushing a particular constant value.

The model implementation exhibits a high degree of modularity. This
is particularly true in the area of the interface between the bytecode in-
terpreter and the object memory manager. The bytecode interpreter
makes explicit calls to object memory routines for each memory access.
The performance of a production implementation can, however, be im-
proved by incorporating intimate knowledge of the object memory im-
plementation into the bytecode interpreter. Many object memory
accesses may be performed directly by the interpreter without actually
invoking separate routines within the object memory manager.

As mentioned earlier, the selection of which interpreter state values
to cache is a critical design decision for the bytecode interpreter. The
designer must evaluate the cost of maintaining the cached values (load-
ing the values when a context is activated and storing some of the val-
ues back into the context when it is deactivated) relative to the actual
performance gains from using the cached values. The evaluation should
consider the average duration of an activation. Our observations indi-
cate that most activations span a small number of bytecodes (less than

51

Memory Management

10). Caching too much of the active context can thus lead to situations
where considerable execution time is spent caching values that are not
used over the span of the activation.

The model implementation caches the actual Oop values of several
context fields. This implies that these values must be decoded into real
memory addresses (performing an object table lookup or conversion
from Smallinteger format) each time they are used. An alternative is to
decode these values when they are fetched from the active context and
to cache the addresses. This means that the cached program counter
would be the actual address of the next bytecode and that the cached
stack pointer would be the actual address of the top element of the ac-
tive context’s stack. If this technique is used, care must be taken that
the cached values are correctly updated, e.g., when the memory manag-
er changes the physical location of objects (performs a segment com-
pression). It is also essential that the values of the stack pointer and
program counter field get updated when the active context changes.

The Smalltalk-80 system’s required support for multiple processes,
when implemented in an obvious manner, can impose an overhead
upon each bytecode. The formal specification requires that a process
switch may occur before each bytecode is fetched. An obvious way to
implement this requirement is to have a global boolean flag which indi-
cates that a process switch is pending, and to test this flag before fetch-
ing each bytecode. This technique has the disadvantage that the
overhead of testing this flag occurs for each bytecode executed even
though actual process switches are infrequent. Since the number of in-
structions required to implement most bytecodes is relatively small, this
test can be a significant overhead. Alternative implementations tech-
niques can avoid this overhead. For example, the address of the
bytecode dispatcher might be stored in a processor register. Routines
which implement bytecodes would then terminate by branching to the
address contained in the registers. A pending process switch could then
be signaled by changing the address in the register to the address of the
routine which performs process switches. When the current bytecode
finishes, control would therefore be transferred to the process switcher.

Memory
Management

The routines of the formal specification’s object memory manager may
be grouped into two categories. The first category consists of those rou-
tines which support accesses to objects. The second category consists of
those routines which support the allocation and deallocation of objects.

52

Design Decisions for Smalltalk-80 Implementors

Object Allocation

The access routines (such as fetchPointer:ofObiject: and
storeByte:ofObject:withValue:) are used by the bytecode interpreter to
store and retrieve the information contained in the fields of objects. In
many implementations of the bytecode interpreter, these functions will
not be performed by independent routines, but will be implicitly
performed by inline code sequences within the routines of the interpret-
er. The object allocation and deallocation routines form the bulk of the
memory manager.

Collectively, the memory management routines will probably com-
prise the most complex part of a Smalltalk-80 interpreter implementa-
tion. In addition, unless great care is taken in their design, the
percentage of execution time spent in these routines can easily domi-
nate the time spent in all other parts of the interpreter. Our initial im-
plementation was found to be spending 70% of its time within memory
management routines (see Chapter 5).

The bytecode interpreter normally requests the allocation of an object
in two circumstances. The first circumstance is the execution of a prim-
itive method (most commonly the primitive new or new:) which explicit-
ly calls for the creation of a new object. The second circumstance is the
activation of a new method. This implicitly requires the creation of a
context object to represent the state of the activation. The formal speci-
fication provides a single generalized set of routines which handle both
types of allocation requests. These routines perform the following ac-
tions. First they must assign an Oop which will be used to refer to the
new object. Second they must find an area of free storage within the ob-
ject memory, large enough to contain the requested object. Next they
must initialize any internal data structures (for example an object table
entry or object length field) used to represent the object. Finally, they
must initialize the fields of the object with a null value.

Observation of actual Smalltalk-80 implementations indicates that
the vast majority of allocation requests are for the creation of context
objects (see Chapter 11). In addition, most of these requests are for the
smaller of the two possible context sizes. A memory manager design
which optimizes the creation of a small context object should thus yield
better performance.

There are a number of possible approaches to achieving such an opti-
mization. A memory manager might have a dedicated list of available
contexts. These available contexts might be preinitialized and have pre-
assigned Oops associated with them. If the memory manager attempts
to ensure that this list will not be empty (perhaps by using a back-
ground process to maintain the list), then a context could usually be al-
located by simply removing the first element from the list.

Storage
Reclamation

53
Memory Management

A memory manager might choose to dedicate a memory segment to
the allocation of contexts. Since such a segment would only contain ob-
jects of a single size, the actual allocation and deallocation process
should be simplified.

Any scheme to optimize context allocation must, of course, conform
to the formal specification’s requirement that a context behaves as a
normal Smalltalk-80 object. The representation of activation records
(contexts) as objects contributes much to the power of Smalltalk-80 (it
allows programs such as the Smalltalk-80 debugger to be implemented)
but requires a large amount of system overhead to support. A major
challenge to Smalltalk-80 implementors is to develop techniques to re-
duce this overhead while preserving the inherent power of context ob-
jects.

Storage reclamation is the second major function of the Smalltalk-80
memory manager. While the Smalltalk-80 storage model allows a pro-
gram to explicitly request the creation of an object, it does not require a
program to explicitly request that an object be deallocated. Once an ob-
ject has been allocated it must remain in existence as long as it is ac-
cessible from any other object. An object may only be deallocated if no
references to it exist. It is the memory manager’s responsibility to auto-
matically deallocate all inaccessible objects. This process is commonly
referred to as garbage collection’. The classical method (called mark/
sweep) of performing garbage collection is to periodically halt process-
ing, identify all inaccessible objects, and then deallocate them. This is
commonly done as a two-phase process. First all accessible objects are
marked. This requires starting at some root object and traversing all
accessible pointers in the system. Second, all unmarked objects are
deallocated. With a large object memory, such a process may consume a
considerable period of time (ranging from several seconds to several
minutes). Because of the interactive nature of the Smalltalk-80 system,
such delays are unacceptable. Instead, a garbage collection technique
which distributes the storage reclamation overhead over the entire
computation is required. The most commonly known technique for
achieving this is reference counting. This is the technique used by the
formal specification’s model implementation.

Reference counting requires that each object have associated with it
a count of the number of pointers to it which exist in the system. Each
time an Oop is stored into a field the reference count of the object asso-
ciated with the Oop is incremented. Since storing an Oop into a field
must overwrite the previous contents of the field, the reference count
associated with the old value is decremented. When the reference count
of an object reaches zero, the object is deallocated. The deallocation of

54

Design Decisions for Smalltalk-80 Implementors

an object invalidates any object references contained in it and hence
will decrement their reference counts. This may recursively cause other
objects to be deallocated.

Although reference counting eliminates the long delays characteristic
of mark/sweep collection, it introduces considerable overhead into the
normal operations of the system. We have found that for our host pro-
cessor (a Motorola 68000), the code sequences that implement simple
bytecodes such as the push and pop operations using reference counting
are several times longer than the equivalent routines without reference
counting. A Smalltalk-80 interpreter design that can decrease this over-
head should have greatly improved performance.

There are several possible approaches to achieving this improved
performance. One technique which reduces the actual counting over-
head is called deferred reference counting®. It is based upon the obser-
vations that the most frequent and most dynamic object references
occur from context objects and that many of these references are quite
transitory. For example, assigning an object to a variable causes the ob-
ject’s reference count to be first increased by one as it is pushed onto
the context’s stack, then decreased by one as it is popped from the
stack, and finally increased by one as it is stored into the variable. Our
measurements show that “store instance variable” bytecodes (the most
common means of creating an object reference from a non-context ob-
Ject) account for less than 4% percent of the dynamically executed
bytecodes. If the need to perform reference counting for references con-
tained within contexts is eliminated, then almost all of the reference
counting overhead will have been eliminated.

A Second
Generation
Design

The first Tektronix Smalltalk-80 interpreter was implemented in Pas-
cal on a Motorola 68000 (see Chapter 5). Even though the performance
of this implementation was so poor that it was only marginally useful,
the experience gained from this effort enabled us to design a new inter-
preter which exhibits much better performance. In developing this sec-
ond generation interpreter we encountered many of the design trade-
offs mentioned in the previous sections of this paper. The new inter-
preter was designed and implemented by the author over a period of
approximately nine months.

We choose to continue using a 68000 as the host for the new inter-
preter but component advances enabled us to use a 10 Mhz processor
with one memory wait state instead of an 8 Mhz processor with two
wait states. We choose to implement the interpreter in assembly lan-

55

Summary and Conclusions

guage. In addition, great care was taken in choosing the code sequences
for all of the frequently executed portions of the interpreter. The com-
mon byte codes are all open coded with separate routines for each possi-
ble instruction parameter.

The active context’s stack pointer, instruction pointer, and home con-
text pointer are cached in 68000 base registers as 68000 addresses. The
stack pointer representation was chosen such that 68000 stack-oriented
addressing modes could be used to access the active context stack. Oth-
er registers are dedicated to global resources such as addressing the ob-
ject table and accessing free context objects.

The Oop format chosen requires only a simple add instruction to con-
vert an Oop into an object table index. Object table entries can be di-
rectly loaded into base registers for accessing objects. A separate
reference-count table is used. Deferred reference counting is used to
limit the reference-counting overhead and to streamline the code se-
quences for push/pop bytecodes. Complete context objects are not creat-
ed for leaves of the message send tree. Context objects are only created
if a method references the active context or causes another new context
to be activated.

The initial (before any tuning and without some optional primitives)
performance benchmarks of our second generation interpreter (see
Chapter 9) show that it is between five and eight times faster than our
original implementation. We feel that these results demonstrate that it
is feasible to build usable microprocessor based Smalltalk-80 implemen-
tations.

Summary and
Conclusions

For any given host processor, its performance as a Smalltalk-80 host
can potentially vary widely depending upon how the Smalltalk-80 inter-
preter is implemented. The goal of a Smalltalk-80 implementor should
be to achieve the best possible mapping of the Smalltalk-80 virtual ma-
chine specification onto the chosen host computer. To accomplish this,
the implementor will need to intimately understand both the internal
dynamic behavior of the Smalltalk-80 virtual machine and the idiosyn-
crasies of the host processor.r We would recommend that an
implementor gain an understanding of the behavior of the virtual ma-
chine by first using a high-level language to implement the interpreter
as described by the formal specification. This implementation can then
be used to study the actual behavior of the Smalltalk-80 system and ex-
plore design alternatives. Finally, a new implementation should be
designed which takes maximum advantage of the characteristics of the

56

Design Decisions for Smalltalk-80 Implementors

host processor. We have presented a few of the design alternatives
which should be considered by Smalltalk-80 implementors as they de-
velop their interpreters.

References

. Goldberg, Adele, and Robson, David, Smalltalk-80: The Language

and Its Implementation, Addison-Wesley, Reading, MA, 1983.

. Lampson, Butler W., “The Dorado: A High Performance Personal

Computer,” Xerox PARC Technical Report CSL-81-1, Jan. 1981.

. Kaehler, Ted, “Virtual Memory for an Object-Oriented Lan-

guage,” Byte vol. 6, no. 8, pp. 378-387, Aug. 1981.

. Baden, Scott, “Architectural Enhancements for an Object-Based

Memory System,” CS-292R Class Report, Computer Science Div.,
Dept. of E.E.C.S., University of California, Berkeley, CA, Fall 1981.

. Cohen, Jacques; “Garbage Collection of Linked Data Structures”,

ACM Computing Surveys vol. 13, no. 3, pp. 341-367, Sept. 1981.

. Deutsch, L. Peter, and Bobrow Daniel G., “An Efficient Incremen-

tal Automatic Garbage Collector,” Communications of the ACM
vol. 19, no. 9, pp. 522-526, Sept. 1976.

