
T C I Z I N F O R M A T I O N
I CIr\ FOR TECHNOLOGISTS

S E P T E M B E R
1 9 8 1

TECHNOLOGY
report

^ ~ C O M P A N Y C O N F I D E N T I A L

f

■]

A (W H 1 V R X

D , G Y R 1 N B

P K U N ; G 0

U H G T F R

P 0 1 J) H . T E

M K J N H B

V F 0 D E W 1

N G A P A S C A L
C O M P I L E R

F O R T H E
M O T O R O L A

6 8 0 0 0

11 W)

1 1 0 1

0 0 1 1 1 0

1 1 0 1 0 1

0 1 1 0 1 1

1 0 0 0 1 1

1 1 0 0 0 1

1 1 1 0 1 0

1 1 0 1 0 0

Ts k t r o n i x -
C O M M I T T E D T O E X C E L L E N C E

A PASCAL COMPILER FOR
MOTOROLA 68000 FIRMWARE
D E V E L O P M E N T

Allen Wirfs-Brock is a software design engineer
in the Systems Engineering and Teciinoiogy
Group, part of the Design Automation Division
(DAD). In the early 70s, Allen was a program
mer In Data Processing. He has since worked
on assemblers for the 8002, Investigated in
teractive program environments In Tek Labs,
was the project leader for GCS Pascal - he
wrote the code generator, and now. In DAD,
is investigating object-oriented programming

languages. Allen was awarded a BS in computer science at the
University of Oregon in 1977, culminating a two-year departure for
that purpose.

Paul L. McCuiiough is a software design engi
neer In the Systems Engineering and Technol
ogy Group, part of the the Design Automation
Division. Paul has been implementor or co-
implementor of three Pascal compilers. He
joined Tektronix four and a half years ago. Pre
viously, Paul was involved in the design and im
plementation of operating systems and data
base management systems at Burroughs Cor-

. \pora t lon . Pau l i s cur ren t ly exp lor ing so f tware
engineering environments: in particular, object-oriented program
ming systems.

Background
Pascal is a computer programming language known for its
unique combination of simplicity, power, portability, and rigor.
For several years, interest in using Pascal as a micropro
cessor systems implementation language has existed witliin
Tektronix. However, the lack of high-quality Pascal compilers
for commonly used microprocessors has limited the use of
Pascal for the development of product firmware. Pascal inter
preters (such as UCSD Pascal) have been available, but their
performance has not been adequate for most firmware
applications.

In early 1980, GCS engineering was about to start several
firmware-intensive product development efforts employing
the Motorola 68000 microprocessor. Because of the size and
complexity of the projects, a high-level language was con
sidered to be an essential implementation tool. Unfortunately
the only high-level language available for the 68000 at that
time (a Pascal compiler developed outside of Tektronix) was
neither powerful nor reliable enough for Tek product firm
ware. For these reasons, GCS engineering chose to develop
its own 68000 Pascal compiler.

Specification of the Language
Pascal was originally designed to be an instructional lan
guage for mainframe computers. For this reason, Pascal
lacks several features that are generally considered essential

for a microprocessor system implementation language. Such
features inc lude:

• separate compilation of Pascal procedures,
• the ability to call assembly language routines from Pascal,
• the ability to write interrupt service routines in Pascal,
• the association of Pascal variables with absolute memory

locations (primarily to support memory-mapped input and
output), and

• efficient manipulation of bit fields.

Many implementations of Pascal have attempted to correct
these deficiencies via numerous extensions to the language
(for example, some compilers extend Pascal variable decla
rations to include an absolute address specification). Such
extensions often result in a plethora of special cases which
destroy the elegant consistency of Pascal.

The design of GCS 68000 Pascal attempts to avoid such
special cases. It implements the language as defined in the
proposed international standard for Pascal. Standard Pascal
is sufficently flexible so that a well designed implementation
may support several systems-programming features without
modifying the language definition. For example, Pascal sub
range types may be used to declare unsigned, or "short"
integer variables, and Pascal sets may be used to manipu
late bits. GCS Pascal recognizes such special usages and
attempts to generate optimal code for them.

The standard language was augmented with a small, con
sistent set of extensions to support systems programming.
Minor extensions, which have been widely accepted by
Pascal users, include non-decimal numeric constants and a
default case statement alternative. The only major extension
supports modular programming.

IVIodularity Features
GCS Pascal supports three forms of separately compilable
modules, referred to as units. A program unit is a Pascal
main program. An interface unit provides definitions of ob
jects (constants, types, variables, procedures, and functions)
that may be used within other units. An implementation unit
implements the objects that are defined in an interface unit.
An implementation unit can be written in either assembly
language or Pascal.

The modularity features of GCS Pascal are quite powerful.
The runtime routines that handle text input/output (that is,
reading integers or characters, or the writing of integers,
strings, Boole'ans, and characters) for GCS Pascal are entire
ly written in GCS Pascal. As another example, several of the

TECHNOLOGYQ
r e p o r t O

users of the compiler have implemented device drivers In
GCS Pascal.

Most of Pascal's system-programming deficiencies can be
overcome by using these modularity features. Variables that
are defined in Interface units may be assigned to absolute
addresses using an assembly-language implementation unit.
A Pascal Interface unit may use formal procedure param
eters (a feature of standard Pascal) to define a procedure
which, In turn, wouid be called to install Pascal procedures
as Interrupt handlers. This installation procedure - which
could be as short as three 68000 instructions - would be
implemented in an assembly-language Implementation unit.

These extensions are a subset of those orglnally suggested
several years ago by a committee of Tek engineers from
several business units. Although the language (sometimes
referred to as "Tek Pascal") specified by that committee has
never been Implemented, It was a useful guide for the design
of GCS Pascal.

The Compiler
The compiler for GCS Pascal consists of two programs. The
first, often referred to as the front-end, is target-machine In
dependent (that Is, It Is Independent of the machine on which
the user's Pascal program will be run). The front-end per
forms the syntactic and semantic analysis of Pascal pro
grams, If a program Is error-free, the front-end translates It
Into an Internal representation that Is suitable for processing
by the second program.

The second program is the 68000 code generator. It reads
the Internal representation of a Pascal program and pro
duces a file of 68000 assembly language Instructions, which

may then be assembled with a 68000 assembler to produce
a 68000 object file. Since the code generator produces
assembly language, rather than binary object files, the com
piler can be used In environments with different operating
systems and different object file formats.

To develop a compiler for another microprocessor, a new
code generator that processes the internal representation
could be constructed - but the front-end would remain un
changed. In fact. If several code generators were to be de
veloped, a user could use the same Internal representation
to produce code for very different microprocessors. Having
only one program that performs the syntactic and semantic
analysis ensures compatibility of source programs - even on
different microprocessors.

Both the front-end and the 68000 code generator are written
In Pascal. The compiler Is capable of compiling itself, thus
allowing the compiler to be transported from the current host
machine (a DECSYSTEM-20) to a 68000 computer.

T h e F r o n t - E n d

The front-end has two primary responsibilities; (1) to deter
mine whether the unit being compiled complies with the
language specification, and If so, (2) to produce an internal
representation of the unit for consideration by the code gen-
erator(s). Should the front-end detect syntactic or semantic
errors In the compilation unit, it reports these discrepancies
with meaningful error messages.

The front-end Is a top-down, recursive-descent compiler to
which the Pascal language naturally lends Itself. The advan
tages of this compilation technique are many; the compiler

/I TECHNOLOGY
R E P O R T

is simple, easily understood, readable by people, reliable, and
easily maintained. Each procedure in the compiler has a spe
cific task and is relatively short. As an example of the sim
plicity of the procedures, the routine that compiles Pascal If
statements consists of less than 15 Pascal statements in its
own right.

As mentioned previously, GCS Pascal compiles modules sep
arately. The front-end reads the interface units needed by the
module being compiled and makes available the identifiers
exported by those interfaces.

The Internal Representation of Pascal Programs
Pascal programs comprise declarations and statements.
Declarations provide information to the compiler about the
labels, constants, types, variables, and procedures the soft
ware engineer will use in the program. Statements describe
the actions and flow of control that will take place when the
program is executed.

Because the front-end cannot make assumptions about the
target machine, it has no knowledge of registers, stacks, ad
dresses, or other artifacts of addressing in common machine
architectures. Instead, the front-end assigns item numbers to
each label, constant, type, variable, procedure, and function
declared in the source program. These item numbers act as
names or "handles" for the various declarations. Each state
ment of the source program is decomposed into one or more
quadruples. A quadruple has an operation code and zero to
three operands depending on the operation. Many operations

yield temporary results; these temporary variables are also
assigned items numbers. For clarity, in examples given in
this article, we do not present the item numbers; we use the
identifiers from the program text. For example, the Pascal
s t a t e m e n t :

a: = b -I- c -I- d;

where a, b, c, and d are all integer variables, would generate
the following quadruples:

add b to c -> tempi

add tempi to d -▶ temp2

move temp2 -▶ a

The 68000 Code Genera to r

The 68000 Pascal code generator is a program that accepts
as input the internal representation for a Pascal program and
translates it into a 68000 assembly language program. A sim
ple code generator would generate a fixed sequence of
68000 instructions for each of the different quadruples. Since
the semantic level of the quadruples is closer to Pascal than
to 68000 machine language, such a simple translation scheme
would produce very poor 68000 code. GCS Pascal is intended
for producing product quality code; that is, code which is effi
cient and reliable enough to be used as Tek product firmware.
The code generator meets this goal by incorporating a number
of code optimization techniques.

An optimizing code generator can have one of two goals: the
minimization of the execution time of the generated program.

GCS PASCAL DATA TYPES

Pascal Type Sample Declaration Implementation

e n u m e r a t i o n s type status =(notReady,
Ready, Stopped);

1 byte
2 bytes If more than 256 elements

subranges type byte = 0..255;
word = 0..65535;
signed word =
- 32768 . .32767 ;

unsigned 1 byte integer
unsigned 2 byte Integer
signed 2 byte integer

Integer var 1: Integer; 32-blt signed integer

r e a l var pi: real; IEEE 32-bit floating point

c h a r var c: char; 1 byte containing ASCII character

B o o l e a n var flag: Boolean; 1 byte containing 0 or 1

pointers type ptr = T byte; 4 byte field containing a 24-bit address

s e t s type blts8= set of 0..7;
b l t s32 = se to f0 . .31 ;
biggest_set = set of 0..2039;

1 byte
4 bytes
255 bytes

Table 1. GCS Pascal data types.

T E C H N O L O G Y O
REPORT O

or the minimization of tlie size of the generated program.
These purposes are often in conflict. Since memory is still a
scarce resource in many Tek products, GCS Pascal resolves
this conflict in favor of hiinimum program size.

The complexity and code quality of a code generator depends
upon hovî many quadruples must be simultaneously examined
to perform an optimization. The simplest optimizations exam
ine a single quadruple. More complex optimizations examine
all the quadruples in a basic blocl< (a sequence of quadruples
with no intervening branches or labels). These first two
classes of optimizations are commonly called local optimiza
tions. The most complex class of optimizations (global optimi
zations) require the examination of the entire program. The
majority of the optimizations performed by the GCS Pascal
code generator are local optimizations. The highly structured
nature of Pascal permits local optimizations to perform many
code improvements that can only be performed by a global
optimizer for other programming languages such as C. (C is
a widely used programming lanquage.) A partial list of the op
timizat ions inc ludes:

• common subexpression elimination,

• constant folding,

• dead code elimination,
• copy propagation,

• deferred assignments, and
• span-dependent instruction optimization.

The ultimate purpose of any optimizing compiler is to pro
duce code that approaches the quality of handwritten assem
bly language code. The success of a compiler in obtaining
this goal is difficult to measure. The code written by a good
programmer for a short program or program fragment is
usually better than the code generated by a good optimizing
compiler. The compiler's advantage is that it can optimize an
entire large program - this may be very difficult for a human.
GCS Pascal averages between nine and ten bytes of 68000
code per executable Pascal statement (in the 68000 archi
tecture, the shortest instruction is two bytes, the longest is
ten bytes).

The Pascal Execution-Time Environment
Pascal programs have been traditionally executed under the
control of an operating system. The operating system normal
ly provides support for certain features of the Pascal lan
guage, such as external files and dynarnjc storage allocation.
Since GCS Pascal is intended for use as a system implemen
tation language, the programs it generates must be indepen
dent of any particular operating system. In fact, these pro
grams may not even assume the existence of an operating
system. (GCS Pascal might be used to write the operatina
system).

Most GCS Pascal programs will operate independently of any
external support. GCS Pascal programs automatically allo
cate storage for local and global variables. They are re
entrant. A GCS Pascal program may call other GCS Pascal
programs (including itself) as subroutines.

Code Generation Example
A Pascal code fragment:

c o n s t
c = 3;

v a r

X : array [0 .. 10] of 0..255:
i : integer;

begin

x[i]:= x[l] +2*c-,

Quadruples produced by front-end:
index X by I tempi
index X by I - temp2
multiply 2 by C - temp3
add temp2. indirect to tempS temp4
move temp4 - tempi, indirect

Quadruples after optimization:
index X by I — tempi
add 6 to tempi, indirect ->■ tempi, indirect

Resulting 68000 code:
MOVE. L l(A7), DO
ADDQ. B #6,X(A7,D0)

Figure 2. Code generation example.

The code generated by the compiler does not directly imple
ment dynamic storage management or files. Instead, code is
generated to call support routines to perform these functions.
The specification of GCS Pascal includes a precise definition
of these routines' interfaces and functionality. The GCS
Pascal support package includes a standard implementation
of most of these routines, which should be satisfactory for
most users. When they are not, users may provide their own
routines that implement the support functions in a manner
that is compatible with their particular system or application.

Project History and Current Status
Development of GCS Pascal was begun by the authors in
March 1980. The first version of the compiler (which per
formed some optimizations but lacked files and floating point
variables) was available for use in August 1980. A second
version, which supported files, floating point variables, and
many additional optimizations, was completed in March
1 9 8 1 .

The compiler is heavily used in GCS; two GCS products near-
ing release use it extensively. Thousands of compilations
using the compiler are performed each month. It is also rela
tively error-free; only one bug (a very minor one) has been
found in a recent two month period.
Available documentation includes specifications for the lan
guage, the execution-time environment, the internal represen
tation, and internal documentation of both the front-end and
the 68000 code generator.

OTECHNOLOGY
OREPORT

GCS Pascal currently operates as a cross-compiler resident
on DEC-10/20 computers. GCS Pascal has been used to
compile itself to 68000 machine code, but has never oper
ated on a 68000. Minimal effort (one to two person-months)
would be required to install GCS Pascal on a 68000 or other
32-bit computer that has a Pascal compiler (such as a VAX).

Approximately 40 percent of the code generator portion of
the GCS Pascal compiler is involved with the generation of
68000 machine code. The development of a code generator
for another target machine would entail the replacement of
that 40 percent of the code generator with code for the new
target machine. A runtime support package for the new

target machine would also be required. It would probably
take between three and nine person-months to re-target the
GCS Pascal compiler, depending upon the architecture of the
target machine and the skill of the implementor(s).
F o r M o r e I n f o r m a t i o n

For information concerning the operation of GCS Pascal
upon the DEC-10/20 computers in Wilsonville use the
TOPS-10 HELP command:

HELP GCS;GCSPAS

For other information concerning the GCS Pascal compiler,
contact Allen Wirfs-Brock, ext. WR-1340. □

PATENT RECEIVED: No. 4,247,920

MEMORY ACCESS SYSTEM

Richard Springer, GCS
Mass Storage,
W 1 - 3 5 3 5

John Theus, GCS
Processor Deveiop-
ment, W1-3573

Richard Springer and John Theus have
received a patent for a means and a
method for transferring information into
and out of a memory system without
regard to byte boundaries. With their
invention, no pre- or post-processing is
required.

With this invention, bytes A and B of a
two-byte word can be stored in or
retrieved from memory locations de
fined by N and N -I-1 without regard to
whether N is an odd or an even memory
address. The invention maintains a
preselected logical relationship be
tween those two bytes as they enter or
leave the memory system. For memory
which is byte wide, as in ROM packs,
the memory system generates two
memory accesses to load or store in A
and B.

A D D R E S S
S I G N A L I

A D D R E S S
INT/EXT
READ/WRITE t

I I
I I
I I
I I
I I
I

r-l--i—Ol
I !

A D D R E S S
M U X .

S I G N A L L I N E

D A T A I N

C O N T R O L

0 - 7

15 -8

V

M U X

P R O B L E M
C O U N T E R

i j E r r i T A T B
A B l<h,- - ---

k l - 'R = A-l-1

O D D

'

E V E N E X T E R N A L

M E M O R Y M E M O R Y M E M O R Y

(32K) (32K) (65K)

X

1 5 - 8

\ l

7 - 0

D A T A O U T

M U X

The patent also covers the inclusion of
the program counter (PC) in the
memory system. Because the PC is
part of the memory system;
• instructions are prefetched,
• instruction operands, which contain

addresses, are used to automatically
cycle the memory to retrieve the
operand data, and

• branch operands, which are PC
relative addresses, are automatically
added to the PC.

All this is done without arithmetic logic
unit (ALU) intervention.

This new method for handling memory
and the use of a 16-bit slice ALU
enabled the 4052 and 4054 Graphic
Computing Systems to operate faster
than their predecessors. The ALU and
this memory system emulate a super
set of the Motorola 6800 instruction set
and thus did not require redesign of
the 4050 series firmware. □

TECHNOLOGYyREPORT I

