
Object Design Roots and New Directions

Rebecca Wirfs-Brock
© 2014 Wirfs-Brock Associates

Xtreme Programming

Design Patterns

Responsibility-Driven
Design

Tektronix
Design

Branches

Initial Inspiration…
Smalltalk abstract methods

subclassResponsibility

Self error: ‘My subclass should
have overridden one of my
messages.’

1989

1990

Designing Object-Oriented Software cover art by Phil Brock

Class-Responsibility-Collaborator Cards
from Ward and Kent

Model
Maintain problem
related info

Broadcast change
notification

View
Render the model

Transform
coordinates

Model

Controller

Controller
Interpret user
input

Distribute control

Model

View

“A Laboratory For Teaching
Object-Oriented Thinking,”

Kent Beck, Apple Computer, Inc.,
Ward Cunningham, Wyatt Software
Services, Inc.
OOPSLA 89

RDD emphasis…

 roles
responsibilities
collaborations

informal tools and
techniques

concepts and
thinking tools

RDD Principles

1. Maximize Abstraction
Hide the distinction between data and behavior. Think of object

responsibilities for “knowing”, “doing”, and “deciding”
Focus on what a class should do and how it should be used, first
Then decide on how to implement it

2. Distribute Behavior
Give objects responsibilities to perform operations based on what

they know
Make objects smart— have them behave intelligently, not just hold

bundles of data…but not too smart
Delegate responsibility

Responsibility-Driven Design
Principles

3. Preserve Design Flexibility

 Design objects so interior details can be readily changed

Hide implementation details: Do not share visibility of private “helper”
classes or attributes

Create well-defined interfaces that are flexible

Implement code so that dependencies between classes are minimized

Understand design variations that need to be supported. Create places
where your existing design can be extended

10

Starting From Different Points-of-
View

Data-Driven

Responsibility-Driven

Event-Driven

Rule-Based

Ad-Hoc

Choice of key
abstractions

Distribution of data
and behavior

Patterns of
collaboration

Object visibilities

influence

Designing a HorseHead

Legs (4)

Tail
BodyStart

Stop

Speed Up

Slow Down

Designing a Horse
Responsibly

A Responsibility Model…

2002

Role Stereotypes:
A tool for seeing and shaping behaviors

stereotype—A conventional, formulaic, and oversimplified
conception, opinion, or image

“Characterizing Your Objects”, Rebecca Wirfs-Brock, February 1992 Smalltalk Report

Role Stereotypes

Information holder -
knows and provides
information

Structurer - maintains
relationships between objects and
information about those
relationships

Role Stereotypes

Interfacer - translates information
and requests

Service provider -
performs work on
demand

Role Stereotypes

Controller - makes decisions
while closely directing
others’ actions

Coordinator - mechanically reacts to events

Using Role Stereotypes
1. Think about objects or

components needed

2. Study a design

3. Blend roles to make objects
more responsible

– information holders that
compute

– service providers that
maintain information

– structurers that derive facts

– interfacers that transform

2.
Pulling up a level…to compare

“The Object-Oriented Brewery: A Comparison of Two Object-Oriented Methods,”R. Sharble and S. Cohen,
Boeing Technical Report BCS-G4059, 1992.

“How Designs Differ”, R. Wirfs-Brock, Smalltalk Report, vol. 1, no. 4

…and characterize

Data-Driven Design
Approach

Responsibility-Driven
Design Approach

centralized control delegated control
controllers coordinators
inherited attributes inherited behavior
many low-level
messages

fewer, higher-level
messages

lots of simplistic
information holders

a few smart objects that
blend role stereotypes

2.
Identifying Role

Stereotypes in Patterns

A Mediator is a coordinator

A Strategy is a service
provider

State objects are too..

An Adapter is an interfacer

3. Blending Stereotypes
The Whole Value Pattern

Classes that represent meaningful domain quantities
Examples: currency, calendar periods, temperature, color,

weight, brightness.
� Color (50% red, 30% green, 10% blue)

� Temperature (75 degrees Fahrenheit)

� Currency (100 U.S. Dollars)

Hold information and perform comparisons and
translations

Streamlining Collaborations

• trust region—an
area where
trusted
collaborations
occur

Collaborate

To work together, especially in a joint intellectual effort

Collaborate

To cooperate treasonably, as with an enemy occupation force

Trust In A Telco Integration Application

Collaborations
between the core and
any adapter were
designed to be
trusted

Components at the
edges take on extra
responsibility to
scrub requests from
untrusted sources

Number Portability
Adapter

Billing System
Adapter

Provisioning System
Adapter

Order Taking
Adapter

Billing System

Number
Portability

System

Provisioning
System

Order Taking
System

Application Integration
Services

Influential Early Object
Design Approaches

Shlaer-Mellor

Booch method

Object Modeling Technique

Objectory

OORAM – Trygve Reenskaug

Rational Unified
Process

à BabyUML

The Driven Meme

RDD ß started it!!!!

DDD

FDD

AMDD

TDD

BDD

ATDD

Agile Practices
& Approaches

x-Driven Development

Test-Driven Development – Kent Beck

Behavior Driven Development – Dan North

Contract-Driven Development AKA Design by Contract™
– Bertrand Meyer

Agile Model-Driven Development – Scott Ambler

Feature Driven Development – Jeff De Luca and Peter
Coad

Model-Driven Development™ – OMG

Model-Driven Engineering

Robert Martin’s S.O.L.I.D.
Principles

Single Responsibility Principle (SRP): A class should have only one
reason to change.

Open-Closed Principle (OCP): Extending a class shouldn't require
modifying that class.

Liskov Substitution Principle (LSP): Subclasses should be
substitutable for their superclasses.

Interface Segregation Principle (ISP): Users of a class should not be
forced to depend on interfaces they do not need.

Dependency-Inversion Principle (DIP): Abstractions should not
depend on details. Details should depend on abstractions.

33Agile Software Development: Principles, Patterns, and Practices (Prentice Hall, 2003)

Major Differences

Design rhythms

Focus

Artifacts

Properties of “good” software

Ownership

Emphasis

FDD Design
Rhythm

Feature by Feature:
Domain walk through
Design
Design Inspection
Code
Code Inspection

Design in the first week, code in
the second

TDD Design
Rhythm

Story-by-story:
Write the simplest test
Run the test and make
it fail
Write the simplest
code that will pass the
test

Repeat until a “story” is
tested and implemented

Design between the keystrokes

Test-First Development

Re(write)
a test

Write production
code

Clean up code
(Refactor)

Check if
test fails

Check
all tests
succeed

test fails

all tests
 succeed

test succeeds

1
or

 m
or

e
te

st
s

fa
il

Test-Frequent Development

Write some
production code

Check if
test fails

Check
all tests
succeed

all tests succeed

test fails

1 or more
tests fail

Tests don’t always get written first.
Tests written & must pass before checking in production code.

Re(write)
a test

Clean up code
(Refactor)

Agile Model-Driven Development

Requirements
Envisioning

(days)

Architecture
Envisioning

(days)

Iteration 0: Envisioning

Iteration Modeling
(hours)

Model Storming
(minutes)

TDD (hours)

Iteration n: Development

a little bit of
modeling then a lot
of coding

Behavior-Driven Development
Specifications of desired behavior

Acceptance scenario structure:

 Given some initial context when an
event occurs then ensure some
outcomes.

BDD Example
WindowControl should close windows

public class WindowControlBehavior {

 @Test
 public void shouldCloseWindows() {

 // Given
 WindowControl control = new WindowControl("My AFrame");
 AFrame frame = new AFrame();

 // When
 control.closeWindow();

 // Then
 ensureThat(!frame.isShowing());
 }
}

“a rephrasing of existing good practice…not a radical departure”

Domain-Driven Design
focus on domain model

Entity object—distinguished by who it is.
Has lifecycle, can change form.

“You are who you are and you are unique.”

Value object—Needn’t be
unique. Typically describes
some characteristic.
 “I don’t care which blue crayon I
use, just that I have one.”Eric Evans, Domain-Driven Design,

Addison-Wesley, � 2004

Domain-Driven Design
focus on “strategic” design

Model in Context

Model in Context

Translation
Map

A context map

preserving, protecting,
and strengthening
domain concepts

Software Design Values

Expressive

Understood

Coherent

Suited for use

Testable

Predictable

Changeable

Software Design Values

Habitable Software
places where designers feel comfortable growing,

extending their designs and living with them for a
period of time

Sustainable
Design

Stewardship

Follow through

Ongoing attention

Not ignoring the little things that
can undermine your ability to
grow, change and adapt your
software

rebecca@wirfs-brock.com
twitter: @rebeccawb

