
Why We Need
Architects (and

Architecture) on
Agile Projects

Rebecca Wirfs-Brock
rebecca@wirfs- brock.com

©2011 Wirfs- Brock Associates

Three Questions…

• If you are agile, how much architecting do you
need and when?

• How can you manage architecture risk on
large, complex agile projects?

• What is the role of an agile architect?

Agile Values

• Core values:
– Design Simplicity

– Communication

– Teamwork

– Trust

– Satisfying stakeholder needs

• Constant learning

Qualities of Good Agile Architecture

• Designed for test.

• Modular.

• No unintentional data redundancy or
overlapping functionality.

• Pragmatic. Does what it needs to without
extras.

• Supports performance, reliability,
modifiability, usability,….goals.

Agile Misconception:
Simple Design is Always Best

• Does that mean you should never…
– create a framework?

– write code that needs comments?

– never implement a complex solution?
– anticipate future features?

Stuart Brand’s Shearing Layers

• Buildings are made of components that evolve
at different timescales.

• Layers: site, structure, skin, services, space
plan, stuff. Each layer has its own value, and
speed of change (pace).

• Buildings adapt because
faster layers (services) are
not obstructed by slower
ones (structure).

—Stuart Brand, How Buildings Learn

Yoder and Foote’s
Software Shearing Layers

“Factor your system so that artifacts that change at similar rates
are together.”—Foote & Yoder, Ball of Mud Pattern

• The platform

• Infrastructure

• Data schema

• Standard frameworks and components

• Abstract classes and interfaces

• Classes

• Code

• Data

LayersSlowerSlower

FasterFaster

Agile Design Values

• Respect your system’s shearing layers.
– Understand the rates of what changes.

• Make what is too difficult, time consuming, or
tedious easier.
– Create tools, leverage design patterns, build or use

frameworks, use data to drive behavior…

• Don’t overdesign!!!

• Don’t under architect.

The Boundary Between Architecture and Design

Architecture
• “Architecturally

significant” design issues
• Balances big picture and

details
• Considers many factors

9

Design
• Designs and

implements
solutions

• Makes detailed
decisions

• Primarily focused on
technical concerns

How Much Architecting Do You Need?

Alistair Cockburn’s project characteristics grid

What’s a Small Project?

• A team of 6-8
• Working on non-life critical

projects
• Architecture typically

evolves along with
implementation without
much risk

• May or may not need extra
architecture attention

Small Project Architecture Practices

• Design “Spikes”
– Goal: Figure out a

design approach.

– Time: Few hours to
a few days.

– Tools: CRC Cards,
exploratory coding,
whiteboard
sketching.

Small Project Architecture Practices

• Experiment on
Branches
– Goal: Experiment away

from main code branch.

– Time: Few hours to a
few days.

– When done: Merge or
throwaway branch
code.

Small Project Architecture Practices

• Incrementally refine
abstractions
– Goal: Refactor to

eliminate redundant
code.

– Time: Few minutes.

– When done:
Whenever you spot
duplication.

Small Project Architecture Practices

• Monitor technical debt.
– Term invented by Ward

Cunningham.

– Piles up when you
continually implement
without going back to
reflect new
understanding.

– Can have long term costs
and consequences.

All Tasks Aren’t Alike

• The Core—fundamental to
your software’s success

• The rest—requires far less
creativity or inspiration

• The Revealing—lead to new,
deeper understanding
– Always a surprise

– Require invention and
innovation

– Hard to predict when they will
be done

Keeping Architecture in Mind

• Sort tasks into “problem buckets”: core and the
rest

• Make sure each iteration gets enough core work
accomplished

• Get team involved on core issues

• Use post-iteration reflections to ask why things
were harder than they first appeared

• Break out of planned iteration cycles to tackle
revealing problems (they need more than a quick
design spike)

THE MORE THERE IS TO
COORDINATE

The Bigger the Project….

Agile Misconception: Upfront
Thinking, Planning, Investigating,

Architecting is Wasteful

• A reaction to “too much” thinking without
“doing”.

• Reality:
– You need to strike a balance: Find the right time and

effort for your project
• Some upfront planning is critical for large, complex projects
• Ongoing thinking, prototyping, and architecture experiments

are important too.

CHOOSE THE MOST RESPONSIBLE
MOMENT

A Better Way to Act:

Team Size Matters

• >9 and any group splits
into teams

• No one knows everything
or everybody
– Expertise uneven
– Skills varied
– Specialists

• Work needs coordination
• Architecture allowed to

“naturally” emerge often
reflects the
organizational structure

Architecture Risk Reduction Tools
• Project/product road maps and timelines
• Landing zones
• Design innovation spikes
• Architecture spikes
• Risk reduction backlogs
• Set-based design

Component
Design Choices

Design Cycle Decision to Eliminate

x
x

x

A Project Landing Zone

A range of measurable attributes that must be
achieved to declare project or product success

•Each requirement in the landing zone has a
range of acceptable values: Minimum, Target,
and Outstanding

•Multi-dimensional success criteria

•Minimum can seem unacceptable in isolation;
but not when you consider everything

Landing Zone Precision & Granularity

Attribute Minimum Target Outstanding

Data Quality:
Accuracy (percent in
error) for critical data
attributes

<2.5% 1.5% 0.5%

Performance:
loan payment
transactions per hour

60,000 75,000 100,000

Usability: Learning
loan management
system tasks by a
new quality analyst

< 16 hrs 8 hrs 4 hrs

Use to identify and
manage:

Landing Zones & Architecture

• Identify and manage
• Potential risks

• Innovations required

• Skills to be acquired

• …
Photo by e.r.w.i.n. Used with attribution
http://www.flickr.com/photos/eherrera/5104896694/

http://www.flickr.com/photos/eherrera/5104896694/

Landing Zones on Agile
Projects

• Helps make sense of
the bigger picture:
– What happens when

one attribute edges
below minimum?

– When will targets be
achieved?

– What do we need to
do architecturally to
achieve targets?

Design Innovation Spike

• Answers deep
questions about
potential solutions
for achieving
landing zone
targets

• Not as tactical or
incidental as an XP
Design Spike

What You Do In an Innovation Spike

– prototyping

– design noodling

– looking outside

– experimenting

– modeling

– vet ideas

Example Innovation Spikes

• Business transaction redesign

• Document parsing

• Fact representation & rule simplification

• Automated location of external resources

• …
• Scale up, scale out, re-distribute, re-think…

• Try out radical changes in how things are done

Design Innovation Spike Best Practices

• Small, smart, goal-oriented
teams
– avoid us vs. them mentality

• Evidence-based answers
– working prototypes
– existing similar things

• Failure is an option
– permit answers that shift

goals

Criteria For an Architecture Spike:
Answer Bounded Questions

• Buys information
– Feasibility

– Rework effort

– Reasonable design
approach

– Alternatives

• Better estimates

• Actionable

Architecture Debt

• Compromises in the
system that have
significant impacts.

• Not isolated.
• Difficult to reverse.
• Examples:

– reliance on a poorly
designed framework

– inconsistent service
interfaces

Ways To Manage Architectural Tasks

Architecturally
meaty feature

Design spike
related task

Architecture
investigation

Prototype Framework
development

Roadmap
exploration

What Can Go On An Architecture
Backlog?

WHAT DO AGILE ARCHITECTS DO?

The Agile Architecture Landscape

Agile Architecture Wayfinding

• Scouting—looking
enough ahead

• Exploring potential
paths
– Short experiments
– Extrapolations
– Conclusions based

on experience,
intelligence
gathered &
intuition

• Explaining and
selling architectural
ideas

Differences Between Agile and Traditional
Architecture

Traditional
• Big picture thinking
• Produces Models and

blue prints
• Not so hands-on
• Focused on

compliance

Agile
• Balances big picture &

details
• Produce what’s needed to

make informed decisions
• Hands-on
• Focused on sustainability

41

Models
“Big M” vs. “little m”

• Lots of time invested

• Intended to last

• “Definitive”

• Usually formal

• May not be widely used
or understood

• Not a lot of time invested

• Intended to communicate

• Often discarded

• Can be formal or informal

• Made to be viewed

Agile architects create models as needed

Model
Maintain problem
related info

Broadcast change
notification

View
Render the model

Transform
coordinates

Model

Controller

Controller
Interpret user
input

Distribute control

Model

View

“A Laboratory For Teaching  Object-
Oriented Thinking,”
Kent Beck, Apple Computer, Inc., Ward
Cunningham, Wyatt Software Services,
Inc.
OOPSLA 89

CRC Cards: A “little m” model
The First CRC Cards

Example:
Component Responsibility Descriptions

“The Customer component is responsible for knowing the organizations and
individuals. It includes authentication and role-based authorization for detailed
tasks and contact information for organizations.”

Example:
Database
“Responsibilities”

Indicators You’ve Paid Enough
Attention to Architecture

• Developers can easily add new functionality.
• New functionality doesn’t “break” existing

architecture.
• Stable interfaces.
• Consistency.
• Few areas that developers avoid because they

are too difficult to work in.
• Defects are localized.
• Able to incrementally integrate new functionality.

Values Important to Agile Architects

• Balance
• Testable

architectural
qualities

• Being hands-on
– programming,

designing, reading
code, building
things…

• Sustainable
development

Sustainable
Architecture

• Stewardship
– Follow through
– Ongoing attention

– Not ignoring the little things that
can undermine our ability to grow,
change and adapt our systems

49

-Rebecca
rebecca@wirfs-brock.com

The Responsible Designer Blog:

www.wirfs-brock.com/blog

www.wirfs-brock.com

