

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

Ampersand Press
An imprint of Constantine & Lockwood, Ltd.

Rowley, Massachusetts

PPROCEEDINGSROCEEDINGS
forUSE 2002
First International Conference
on Usage-Centered, Task-Centered,
and Performance-Centered Design

25-28 August 2002
Portsmouth, New Hampshire

Larry L. Constantine, Editor

http://www.foruse.com

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

PROCEEDINGS

forUSE 2002, First International Conference on

Usage-Centered, Task-Centered, and Performance-Centered Design

Edited by Larry Constantine

Conference Organizers: Constantine & Lockwood, Ltd., http://www.foruse.com

Conference Chairpersons: Larry Constantine and Lucy Lockwood,
 Constantine & Lockwood, Ltd.
Program Chairperson: James Noble, Victoria University of Wellington, New Zealand
Industry Liaison: Helmut Windl, Siemens AG, Germany

Professional Affiliate: Usability Professionals’ Association, http://www.upassoc.org
Silver Sponsor: Classic Systems Solutions, Inc., http://www.classicsys.com
Bronze Sponsor: Ariel Performance Centered Systems, Inc., http://www.arielpcs.com

Published by Ampersand Press
Constantine & Lockwood, Ltd.
58 Kathleen Circle
Rowley, Massachusetts 01969
http://www.foruse.com

Copyright © 2002 by Constantine & Lockwood, Ltd.

All world rights reserved. No portion of this publication may be reproduced, stored for
retrieval, or transmitted, in an form or by any means, electronic, mechanical,
photographic, or otherwise, without the prior written consent of the publisher.

Printed in the United States of America by
The Yankee Printer
Hampton Falls, New Hampshire 03844
http://www.yankeeprinter.com

First printing, August 2002

http://www.foruse.com
http://www.upassoc.org
http://www.classicsys.com
http://www.arielpcs.com
http://www.foruse.com
http://www.yankeeprinter.com
http://www.upassoc.org/
http://www.classicsys.com/
http://arielpcs.com/

 Wirfs-Brock: Handling Exceptional Conditions 341

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

[T33][T33]

What It Really Takes

to Handle Exceptional Conditions
Rebecca Wirfs-Brock

Henry Petroski, structural engineer and historian, writes of the need to
understand the consequences of failure:

The consequences of structural failure in nuclear plants are so
great that extraordinary redundancies and large safety margins
are incorporated into the designs. At the other extreme, the frailty
of such disposable structures as shoelaces and light bulbs,
whose failure is of little consequence, is accepted as a
reasonable trade-off for an inexpensive product. For most in-
between parts or structures, the choices are not so obvious. No
designers want their structures to fail, and no structure is
deliberately under designed when safety is an issue. Yet designer,
client, and user must inevitably confront the unpleasant
questions of ‘How much redundancy is enough?’ and ‘What cost
is too great?’” (Petroski, 1992)

As software designers, we too need to make our software machinery
hold up under its anticipated use.

Software need not be impervious to failure. But it should not easily
break. A large part of software design involves building our software to
accommodate situations that, although unlikely, still have to be dealt with.

342 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

What if the user mistypes information? How should the software react?
What if the items a customer wants are not available? Even if the
consequences of not delivering exactly what the customer wants are not
catastrophic, this situation must be dealt with reasonably—in ways
acceptable to the customer and the business.

When information is mistyped, why not notify the user and let them re-
enter it. Not enough stock on hand? Again, ask the user to cancel or
modify their order. Software should detect problems and then engage the
user in fixing them!

But what if a user is unable to guide the software? Shouting “stack
overflow!” or “network unavailable!” will not help a disabled person who
communicates by using software that interprets her eye blinks and
constructs messages. “Punch-in-the-gut” error messages are
unacceptable in that design, which should handle many exceptional
conditions and keep running without involving the user at all.

There is an enormous difference between making software more
reliable and “user attentive,” and designing it to recover from severe
failures. Fault tolerant design incorporates extraordinary measures to
ensure that the system works despite failure. For example, telephone-
switching equipment is extremely complex, yet has to be very reliable.
Redundancies are built into the hardware and the software. Complicated
mechanisms are designed to log and recover from many different faults
and error conditions. If a hardware component breaks, a redundant piece
of equipment is provisioned to take its place. The software keeps the
system running under anticipated failure conditions without losing a beat.

The more serious the consequences of failure, the more effort you
need to take to design in reliability. Alistair Cockburn, in Agile Software
Development (Cockburn, 2002), recommends that the time you spend
designing for reliability fit with your project’s size and criticality. He
suggests four levels of criticality:

 Loss o f comfor t .Loss o f comfor t . When the software breaks there is little impact.
Most shareware falls into this category.

 Loss o f d i sc re t ionary mon ies .Loss o f d i sc re t ionary mon ies . When the software breaks it costs.
Usually there are workarounds, but failures still impact people, their
quality of work and businesses effectiveness. Many IT applications
fall into this category. Applications that affect a business’
customers do so as well. If a customer gets overcharged because
of a billing miscalculation, this does not cause the business severe

 Wirfs-Brock: Handling Exceptional Conditions 343

harm. Usually the problem gets fixed, one way or the other, when
the customer calls up and complains!

 Loss o f essent ia l mon ies .Loss o f essent ia l mon ies . On the other hand, some systems are
critical. At this level of criticality, it is no longer possible to correct
the mistake with simple workarounds. The cost of fixing a fault is
prohibitive and would severely tax the business.

 Loss o f l i f e .Loss o f l i f e . If the software fails, people could get injured or
harmed. People who design air traffic control systems, space
shuttle control software, pacemakers, or anti-locking brake control
software spend a lot of time analyzing how to keep the system
working under extreme operating conditions.

The greater the software’s criticality, the more justification there is for
spending time to design it to work reliably. Even if not a matter of life and
death, other factors may drive you to design for reliability:

 Software that runs unattended for long periods may operate under
fluctuating conditions. Exceptional conditions in its “normal”
operating environment should not cause it to break.

 Software that “glues” larger systems together often needs to check
for errors in inputs and work in spite of communications glitches.

 Components designed to “plug in” and work without human
intervention need to detect problems in their operating
environment and run under many different conditions. Otherwise,
“plug-and-play” would not work.

 Consumer products need to work, period. Their success in the
marketplace depends on high reliability.

A Strategy for Increasing System Reliability
Reliability concerns crop up throughout development. But once you have
decided on the basic architecture of your system, assigned responsibilities
to objects, and designed collaborations, you can take a closer look at
making specific collaborations more reliable—by designing objects to
detect and recover from exceptional conditions.

I suggest you start by characterizing the different types of
collaborations in your existing design. This will give you a sense of where
you need to focus efforts on improving objects and designing them to be
more resilient. Then, identify key collaborations that you want to make

344 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

more reliable. Once you have characterized you system’s patterns of
collaborations and prioritized you work, you need to get very specific:

 List the exceptions and errors cases you want your design to
accommodate.

 Decide on reasonable exception handling and error recovery
strategies to employ

 Try out several design alternatives and see how responsibilities
shift among collaborators. Settle on a solution that represents a
best compromise.

 Define additional responsibilities for detecting exceptions and
obligations of other objects for resolving them if that is part of your
solution.

 Look at your design for holes, unnecessary complexity, and
consistency

A system is only as reliable as its weakest link, so it makes little sense
to design one very reliable object surrounded by brittle collaborators, or to
make one peripheral task very reliable while leaving several central ones
poorly designed. The system as a whole needs to be designed for
reliability, piece by piece.

Determine where collaborations can be trusted.
One way to get a handle on how collaborations can be improved is to carve
your software into regions where “trusted communications” occur.
Generally, objects located within the same trust region can communicate
collegially, although they may still encounter exceptions and errors as they
perform their duties. Within a system there are several different cases to
consider:

 collaborations between objects that interface to the user and the
rest of the system;

 collaborations between objects within the system and objects that
interface with external systems;

 collaborations between objects outside a neighborhood and objects
inside a neighborhood;

 collaborations between objects in different layers;
 collaborations between objects at different abstraction levels,

 Wirfs-Brock: Handling Exceptional Conditions 345

 collaborations between objects of your design and objects
designed by someone else;

 collaborations between your design and objects that come from a
vendor-provided library.

Whom an object receives a request from is a good indicator of how
likely is it to accept a request at face value. Whom an object calls upon
determines how confident it can be that the collaborator will field the
request to the best of its ability. It is a matter of trust.

Trusted versus untrusted collaborations.
When should collaborators be trusted? Two definitions for collaboration
are worth re-examining:

Collaborate: 1. To work together, especially in a joint intellectual
effort. 2. To cooperate treasonably, as with an enemy occupation
force. —The American Heritage Dictionary.

The first definition is collegial: objects working together towards a
common goal. When objects are within the same trust region, their
collaborations can be conscientiously designed to be more collegial. Both
client and service provider can be designed to assume that if any
conditions or values are to be validated; the designated responsible party
need only do them once.

In general, when objects are in the same architectural layer or
subsystem, they can be more trusting of their collaborators. And they can
assume that objects that use their services call upon them appropriately.

The second definition requires you to think critically. When
collaborators are designed by someone else, or when they are in a
different layer, or a library, your basic assumptions about the appropriate
design for that collaboration need to be carefully examined. If a
collaborator cannot be trusted—it does not mean it is inherently more
unreliable. But a more defensive collaborative stance may appropriate. A
client may need to add extra safeguards—potentially both before and after
calling an untrusted service provider.

In general, when objects are in the same architectural layer or
subsystem, they can be more trusting of their collaborators. And they can
assume that objects that use their services call upon them appropriately.

346 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

Figure 1 F igu re 1 -- T rus t assumpt ions . T rus t assumpt ions .

The second definition requires you to think critically. When
collaborators are designed by someone else, or when they are in a
different layer, or a library, your basic assumptions about the appropriate
design for that collaboration need to be carefully examined. If a
collaborator cannot be trusted—it does not mean it is inherently more
unreliable. But a more defensive collaborative stance may appropriate. A
client may need to add extra safeguards—potentially both before and after
calling an untrusted service provider.

If a request is from an untrusted or unknown source, extra checks may
be made before a request is honored. Several situations need to be
considered:

 When an object sends a request to a trustworthy colleague.
 When an object receives a request from a trusted colleague.
 When an object uses an untrusted collaborator.
 When an object receives a request from an unknown source.
 When an objects receives a request from a known untrustworthy

source.

UserLoginController PasswordChecker

isValid(password)

I am sending you a request at the right
time with the right information

I assume that I don’t have to check to
see that you have set up things properly
for me to do my job

 Wirfs-Brock: Handling Exceptional Conditions 347

Collaborations between trusted colleagues.
A client that provides a well-formed request expects its service provider to
carry out that request to the best of its ability. When an object receives a
request from a trusted colleague, it typically assumes that the request is
correctly formed, that it is sent at an appropriate time, and that data
passed along with the request is well formed (unless there is an explicit
design decision that the receiver takes responsibility for validating this
information).

During a sequence of collaborations between objects within the same
trust region there is little need to check on the state of things before and
after each request. If an object cannot fulfill its responsibilities and is not
designed to recover from exceptional conditions, it could raise an
exception or return an error condition enabling its client (or someone else
in the collaboration chain) to responsibly handle the problem. However,
the object may legitimately not check and will not even notice when things
fail. In a trusted collaboration there is no need to check for invalid
collaborations. So if trust is ever violated, things can go terribly wrong.

When using an untrusted collaborator.
When collaborators are untrusted, extra precautions may need to be
taken. Especially if the client is designed to be responsible for making
collaborations more reliable. You may pass along a copy of data instead of
sharing it with an untrusted collaborator. Or to check on conditions after
the request completes.

When receiving requests from an unknown source.
Designers of objects that are used under many different situations—such
as those included in a class library or framework—have to balance their
objects’ expected use (or misuse) with overall reliability goals. There are
not any universal design rules to follow. Library designers must make a lot
of hard choices. You can design your object to check and raise exceptions
if data and requests are invalid (that is certainly a responsible thing to do,
but not always necessary) or not (that is the simplest thing, but not always
adequate). Your goal should be to design your framework or library to be
consistent and predictable, and to provide enough information so that
clients can attempt to react and recover when you raise exceptions.

348 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

When receiving requests from an untrusted client.
Requests from untrusted sources often are checked for timeliness and
relevance. Especially if your goal is to design an object that works reliably
in spite of untrustworthy clients. Of course there are degrees of trust and
degrees of paranoia! Designing defensive collaborations can be expensive
and difficult. In fact, designing every object to collaborate defensively
leads to poor performance and potentially introduces errors.

Implications of Trust
Determining “trust regions” for a system is straightforward. And once you
determine them, it is easier to decide where to place extra responsibilities
for making collaborations more reliable:

In the application that enables a disabled user to communicate,
all objects within the “core” of the application were designed to
work together and are considered to be within the same trust
region. Objects in the application control and domain layers all
assume trusted communications. Objects at the “edges” of the
system—within the user interface and in the technical services
layer—are designed to take precautions to make sure outgoing
requests are honored and incoming requests are valid. For
example, the Selector debounces user eye blinks and only
presents single “click” requests. And the MessageBuilder quite
reasonably assumes that it receives “trusted” requests from the
objects at the edges: the Selector and the Timer. Objects
controlled by the MessageBuilder assume they are getting
reasonable requests, too. So requests to add themselves to a
message, or to offer the next guess are done without questioning
the validity of input data or the request. Trusted collaborations
within the “core” of the system greatly simplified the
implementation of the MessageBuilder, the Dictionaries, the
Guesser, the Message, and Letter, Word and Sentence objects’
responsibilities.

Objects at the “edges” of the system have additional responsibilities
for detecting exceptions and trying to recover if they can, or if not, to report
them to a higher authority (someone at the nurse’s station). When a
message cannot be reliably delivered, extra effort is made to send an
alarm to the nurse’s station and raise an audio signal.

 Wirfs-Brock: Handling Exceptional Conditions 349

Figure 2 Figure 2 -- The Selector and the Timer are designed to deliver trusted The Selector and the Timer are designed to deliver trusted
requests to the MessageBuilder, allowing it to focus on coordinating the requests to the MessageBuilder, allowing it to focus on coordinating the

cons t ruccons t ruc t ion o f the user ’s message .t ion o f the user ’s message .

In a large system, it is useful to distinguish whether collaborations
between components can be trusted, and furthermore, to identify
guarantees, obligations and responsibilities of each component. Once
these constraints are agreed upon, each component can be designed to
do its part to ensure the system as a whole works more reliably.

A telco integration framework receives service order requests and
schedules the work to provision services and set up billing. The
architecture of the system consists of a number of “adapter”
components that interfaced to external applications.
Collaborations between an adapter and its “adapted” application
were generally assumed to be untrusted, while collaborations
between any adapter and core of the system were trusted.
The order taking adapter component received requests to create,
modify or cancel an order from an external Order Taking
application. These requests were converted into an internal

350 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

format used by the scheduler that was part of the framework
integration services. The order taking adapter did not trust the
Order Taking application to give it well-formed requests: it
assumed that any number of things could be wrong (and they
often were). It took extraordinary efforts to guarantee that
requests were correctly converted to internal format before it
passed them to the scheduler.
Even so, it was still possible to receive requests that were
inconsistent with the actual state of an order: for example a
request to cancel an order could be received after the work had
already been complete. It was business policy not to “cancel”
work that had already been completed. So while collaborations
between the order-taking adapter and the scheduler were trusted,
well-formed requests could still fail.

F i g u rF i g u r e 3 e 3 -- The te l co in teg ra t ion f ramework a rch i tec tu re . The te l co in teg ra t ion f ramework a rch i tec tu re .

external
applications

Provisioning

Billing

Order
Taking

external
applications

Provisioning
Adapter

Billing
Adapter

Number
Portability
Adapter

Number
Portability

Integration
Framework

Services

the telco
framework and

adapters

Order
Taking Adapter

 Wirfs-Brock: Handling Exceptional Conditions 351

Identify Collaborations to Make Reliable.
At first, you may not know just exactly what measures to take to increase
your system’s reliability. First, identify several areas where you want to
ensure reliable collaborations. Revisit your initial design and take a stab at
improving it. You might consider:

 Collaborations in support of a specific use case or task
 How an object neighborhood responds to a specific request
 How an interfacer handles errors and exceptions encountered in an

external system
 How a control center responds to exceptional conditions and errors

raised by objects under its control
Once you have identified a particular collaboration to work on, consider

what needs to be done. Maybe no additional measures need to be taken—
objects are doing exactly what they should be doing. More likely, you will
want to add specific responsibilities to some objects for detecting
exceptional conditions and responsibilities to others for reacting and
recovering from them. The first step to making any collaboration more
reliable is to understand what might go wrong.

Once you have gauged how reliable your software needs to be,
consider key collaborations and look for ways to make them more reliable.
As you dig deep into design and implementation you will uncover many
ways your software might break. However, while it is up to us as designers
to decide what appropriate measures to take, to propose solutions, and to
work out reasoned compromises, extraordinary measures are not always
necessary.

Will use cases tell us what can go wrong?
“The major difference between a thing that might go wrong and a
thing that cannot possibly go wrong is that when a thing that
cannot possibly go wrong goes wrong it usually turns out to be
impossible to get at or repair.” —Douglas Adams, Mostly Harmless
(1993).

Ideally, some requirements document or use case should spell out the
right thing to do when things go wrong. But use cases generally describe
software in terms of actors’ actions and system responsibilities, not what
can go wrong and how to remedy it. At best, use case writers will identify a
few problems and briefly describe how some of them should be handled.

352 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

Even then, use case writers may have been going astray. What someone
considers a big problem might not be. Just because someone describes a
possible exception and how it should be resolved does not mean it will
actually happen. Your design may have successfully sidestepped around
the potential problem.

But that does not relieve you from the responsibility of identifying real
problems and resolving them. As you dig into design, you are likely to
identify many exception conditions and devise ways of handling them.
When your solutions are costly or represent compromises, review them
with all who have a stake in your software’s overall reliability. They should
weigh in on your proposed solutions.

It is easy to waste a lot of time considering things that might go wrong
but will not or pondering the merit of partial solutions when there is no
easy fix. To avoid getting bogged down, you need to distinguish between
errors and exceptions. Errors are when things are wrong. Errors can result
from malformed data, bad programs or logic errors, or broken hardware. In
the face of errors, there is little than can be done to “fix things up” and
proceed. Unless your software is required to take extraordinary measures,
you should not spend a lot of time designing your software to recover from
them.

On the other hand, exceptions are not normal, but they happen, and
you should design your software to handle them. This is where the bulk of
your energy should go—solving exceptional conditions. If exceptional
conditions have been identified for a use case, how they should be
accommodated may have been as well:

Invalid password entered—After three incorrect attempts, inform
the user that access is denied to the online banking system until
he contacts a bank agent and is assigned a new password.

To translate this into an appropriate design solution you will need to
assign some object the responsibility for validating the password; several
more are likely to be involved in recovering from this problem. This is
pretty easy—there is nothing difficult or challenging in designing an object
to validate a password or report an error condition to the user.

But wait. Is this an error or an exception? Mistyped passwords are a
regular if infrequent occurrence. We want our software to react to this
condition by giving the user a way to recover, so we view it as an
exception, not an error. In fact, most use cases describe exceptions that
cause the software to veer off its “normal” path. Some will be handled

 Wirfs-Brock: Handling Exceptional Conditions 353

deftly and the user will be able to continue with their original task. These
are recoverable exceptions. With others, the user will not be able to
complete the original task. The use case will end abnormally, but the
application will keep running. From the user’s perspective these are
unrecoverable exceptions. Rarely will use cases mention errors, unless
their authors are experienced at describing fault tolerant software.

Object Exceptions are Different than Use Case Exceptions
One thing must be made clear: Exceptions described in use cases are
fundamentally different than exceptions uncovered in a design. Use case
exceptions reflect the inability of an actor or the system to continue on the
same course. Object exceptions reflect the inability of an object to perform
a requested operation. During execution of a single step in a use case
scenario, potentially several use case-level exceptions could happen.
However, the execution of a single use case step could result in thousands
of requests between collaborators, any number of which could cause
numerous different object exceptions. There is not a one-to-one
correspondence between exception conditions described in use cases and
object exceptions. Regardless, we need to make our application behave
responsibly. We also need to make it reasonably handle the many more
exceptional conditions that arise during execution.

Object exception basics.
An exception condition detected during application execution invariably
leads some object or component to veer off its “normal” path and fail to
complete an operation. Depending on your design, some object may raise
an exception, while another object may handle it. By handling an
exception, the system recovers and puts itself into a predictable state. It
keeps running reliably even as it veers off the “normal” path—to an
expected but “exceptional” one. Left unhandled, however, exceptions can
lead to system failure, just as unhandled errors do.

It is up to you to decide what to do when an exception condition is
encountered. Many object-oriented programming languages define
mechanisms for programmers to declare exceptions and error conditions,
signal their occurrence, and to write and associate exception-handling
code that executes when signaled. Alternatively, you could design an
object to detect an exception condition, and instead of raising an
exception, it could return a result indicating that an exception occurred.

354 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

Partly, it is a matter of style and largely a matter of implementation
language that determines whether you design your objects to raise
exceptions or report exception conditions. Either design shown in Figures
4 and 5 would “handle the exception condition” of an invalid password.

Figure 4 Figure 4 -- Execution transfers directly to callers’ exception handling code. Execution transfers directly to callers’ exception handling code.

F i gu re 5 F igu re 5 -- Caller checking a result for exceptions during the call. Caller checking a result for exceptions during the call.

UserLogin
Controller

Application
Coordinator

login(user, password)

third login attempt raises exception

login(user, password)

one or more of the callers handles the exception

Presentation
Coordinator

<<exception>>
<<exception>>

UserLogin
Controller

Application
Coordinator

login(user, password)
login(user, password)

Presentation
Coordinator

creates and returns description of exception in result

callers read results and handle exception

result

result

 Wirfs-Brock: Handling Exceptional Conditions 355

The first uses exception facilities in the programming language; the
second returns values that signify an exceptional condition. Both
techniques convey the exceptional condition to the client. Yet another
design alternative would to make a service provider smart. It might
remember that an exception condition has occurred and provide an
interface for querying this fact.

Let’s look further at what it means to define and use exception
facilities in an object-oriented programming language. When an object
detects an exception and signals this condition to its client, it is said to
raise an exception. In the Java programming language, the term is “throw
an exception.” In order to throw a specific exception, a programmer would
declare that a particular type of Throwable object (which contains
contextual information) to be sent along with the exception signal. An
object throws an exception by executing a statement:

if (loginAttempts > MAX_ATTEMPTS) {
 throw new LoginAttemptsException();
}

The handler of an exception signal has several options. It could fix
things up and then transfer control to statements immediately following
the code that raised the exception (resumption). Or, it might re-signal the
same or a new exception, leaving the responsibility for handling it to a
possibly more knowledgeable object (propagation). In most cases, instead
of grinding to a halt, it is desirable to make progress. This involves a
cooperative effort on behalf of both the object raising the exception, the
client sending the exception-causing request, and one or more objects in
the collaboration chain if the requestor chooses not to handle the
exception then and there.

There must be enough information available to an object that takes
responsibility for handling the exception to take a meaningful action. Be
aware that when you design an exception object you can declare
information that it will hold. The object that detects the exception
condition when it creates an exception object populates it with this
information.

We offer these general guidelines for declaring and handling
exceptions:

356 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

Avoid declaring lots of different exception classes.
The more classes of exceptions you define, the more cases an exception
handler must consider (unless it groups categories of exceptions together).
To keep exception handling code simple, define fewer classes of
exceptions and, design clients to take different actions based on answers
supplied by the exception object.

Deep and wide exception class hierarchies are seldom a good idea.
They significantly increase the complexity of a system yet the individual
classes are seldom actually used. Compare the complexity of an IOError
class hierarchy with twenty subclasses (probably arranged in some sub-
hierarchy structure) with one I/O error class that knows an error code with
twenty possible values. Most programmers can remember and distinguish
5-7 clearly different exception classes, but if you give them 20-30
exception classes with similar names and subtle distinctions they will
never be able to remember them all and will have to continually refer back
to the system documentation.

Identify exception classes the same way you identify any other
classes— via responsibilities and collaborations. Unless two exceptions will
have really distinct responsibilities or participate in different types of
collaborations they should not need different classes. Outside the world of
exceptions you would not normally create two distinct classes simply to
represent two different state values, so why create multiple exception
classes simply to represent different values of an error code?

A case where it makes sense to have different exception classes would
be for FileIOError and EndOfFile exceptions. Some people might try to treat
EndOfFile as a FileIOError but this would not be a good design choice.
FileIOError represents a truly exceptional and unexpected occurrence. Its
collaborators are likely to have to take drastic actions. EndOfFile is usually
an expected occurrence and its collaborators are likely to respond to it by
continuing the normal operations of the program. Seldom, if ever, do you
want to respond in the same way to both of these exceptions. But you are
quite likely to want to respond in an identical manner to all FileIOErrors.

Name an exception after what went wrong, not who raised it.
This makes it easy to associate the situation with the appropriate action to
take. The alternative makes it less clear why the handler is a performing
specific actions. An exception handler may also need to know who
originally raised it (especially if it was delegated upward from a lower-level
collaborator), but this can easily be defined to be included as part of the

 Wirfs-Brock: Handling Exceptional Conditions 357

exception object. In this coding example, TooManyLoginAttemptsException
explains what happened not who threw it:

try {
 loginController.login(userName, password);
}
catch (TooManyLoginAttemptsException(e)) {
 // handle too many login attempts
}

Recast lower-level exceptions to higher-level ones whenever you raise
your abstraction level. When very low-level exceptions percolate up to a
high-level handler, there is little context for the handler to make informed
decisions. Recast an exception whenever you cross from one level of
abstraction to another. This enables exception handlers that are way up a
collaboration chain to make more informed decisions and reports. Not
taking this advice can lead your users to believe that your software is
broken, instead of just dealing with unrecoverable errors:

A compiler can run out of disk space during compilation. There is
not much the compiler can do in this case except report this
condition to the user. But it is far better for the compiler to report
“insufficient disk space to continue compilation” than to report
“I/O error #xxx”. With the latter message, the user may be led to
believe there is a bug in the compiler, rather than insufficient
resources which could be corrected by the user. If this low-level
exception were to percolate up to objects that do not know to
interpret this I/O error exception, it will be hard to present a
meaningful error message. To prevent this, the compiler
designers recast low-level exceptions to higher-level ones
whenever subsystem boundaries were crossed.

Provide context along with an exception.
What are most important to the exception handler are what the exception
is and any information that aids it in making a more informed response.
This leads to designing exception objects that are rich information holders.
Specific information can be passed along including: values of parameters
that caused the exception to be raised, detailed descriptions, error text,
and information that could be used to take corrective action. Some
designers, when recasting exceptions, embed lower level exceptions as
well, providing a complete trace of what went wrong.

358 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

Figure 6 F igu re 6 -- P rese rv ing in fo rmat ion in “ inner excep t ions” P reserv ing in fo rmat ion in “ inner excep t ions”

Preserve information in “inner exceptions.”
Assign exception-handling responsibilities to objects that can make
decisions. There are many different ways to “handle” an exception: it could
be logged and rethrown (possibly more than once), until someone takes
corrective action. Who naturally might handle exceptions? As a first line of
defense, consider the initial requestor as the first line of defense. If it
knows enough to perform corrective action, then the exception can be
taken care of right away and not be propagated. As a fallback position, it is
always appropriate to pass the buck to some object that takes
responsibility for making decisions and controlling the action. Controllers
and objects located within a control center are naturals for handling
exceptions.

Handle exceptions as close to the problem as you can.
One object raises an exception, and somewhere up the collaboration chain
another handles it. Sure this works, but it makes your design harder to
understand. It can make it difficult to follow the action if you carry this to
extremes.

Objects that interface to other systems and components often take
responsibility for handling faulty conditions in other systems they interface
to, relieving their clients of having to know about lower-level details and
recovery strategies. Objects that play a role of providing a service often

UserLogin
Controller

Application
Coordinator

object creates initial exception

login(user, password) TooMany
LoginAttempts

Exception

<<create>>

UserAccess
Exception

<<create>>

original description is preserved in “inner exception”

login(user, password)

<<exception>>

<<exception>>

 Wirfs-Brock: Handling Exceptional Conditions 359

take on added responsibility to handle an exception and retry an
alternative means of accomplishing the request.

Consider returning results instead of raising exceptions.
Instead of raising exceptions, you always can design your exception-taking
object to return a result or status that is directly checked by the requestor.
This makes it more obvious who must take at least some responsibility—
the requestor.

Exception and Error Handling Strategies
In the case of errors as well as exceptions, it is a matter of how much
effort and energy you want to expend handling them. Highly-fault tolerant
systems are designed to respond to take extraordinary measures. A highly
fault tolerant system might recover from programming errors by running
an alternate algorithm, or from a disk suddenly becoming inaccessible by
printing data on an alternate logging device. Most ordinary software would
break (gracefully or not, depending again, on the design and the specific
condition).

There are numerous ways to deal with a request that an object cannot
handle. To explore several options, Doug Lea (2000) poses the question,
“What would you do if you were asked to write down a phone number and
you didn’t have a pencil?” One possibility is what Lea calls unconditional
action. In this simple scheme, you would go through the motions of writing
as if you had a pencil, whether you did or not. Besides looking silly, this is
only acceptable if nobody cares that you fail to complete your task.

Employing this strategy often leads to unpredictable results. In real life,
you likely would not be so irresponsible, and your software objects should
not behave this way either. If an object or component or system that
receives a request is not in the proper state to handle it, nothing can be
guaranteed. An unconditional act could cause the software to trip up
immediately, or worse yet, to fail later in unpredictable ways. Ouch! There
are more acceptable alternatives:

 Inaction—Ignore the request after determining it cannot be correctly
performed.

 Balk—Admit failure and return an indication to the requestor (by
either raising an exception or reporting an error condition).

 Guarded suspension—Suspend execution until conditions for
correct execution are established, then try to perform the request.

360 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

 Provisional action—Pretend to perform the request, but do not
commit to it until success is guaranteed.

 Recovery—Perform an acceptable alternative.
 Appeal to a higher authority—Ask a human to apply judgment and

steer the software to an acceptable resolution.
 Rollback—Try to proceed, but on failure, undo the effects of a failed

action.
 Retry—Repeatedly attempt a failed action after recovering from

failed attempts.
These strategies impact the designs of both clients as well as objects

fulfilling requests, and, possibly, other participants in recovery activities.
No one strategy is appropriate in every situation. Inaction is simple but
leaves the client uninformed. When an object balks, at least the requestor
knows about the failure and could try an alternative strategy. With guarded
suspension, the object would patiently wait until some other object gave it
a pencil (the means by which someone knows what is needed and
supplies it is unspecified).

Provisional action is not meaningful in this example, but it makes
sense when a request takes time and can be partially fulfilled in
anticipation of it later completing it. Recovery could be as simple as using
an alternate resource—a pen instead of a pencil. Appealing to a higher
authority might mean asking some human who always keeps pencils
handy and sharp to write down the number instead. Rollback does not
make much sense in this example, since nothing has been partially done—
unless the pencil breaks in the middle of writing down the number. In this
case the object would throw away the partially written number. Rollback is
a common strategy where either all or nothing is desired and partial
results are unacceptable. Retrying makes sense only when there is a
chance of success in the future.

To sum up, there will always be consequences to consider when
choosing any recovery strategy:

“The designer or his client has to choose to what degree and
where there shall be failure. Thus the shape of all designed things
is the product of arbitrary choice. If you vary the terms of your
compromise...then you vary the shape of the thing designed. It is
quite impossible for any design to be ‘the logical outcome of the
requirements’ simply because the requirements being in conflict,
their logical outcome is an impossibility.”—David Pye (1978)

 Wirfs-Brock: Handling Exceptional Conditions 361

Mixing or combining strategies often leads to more satisfactory results.
For example, one object could attempt to write down the phone number
but broadcast a request for a pencil if it fails to locate one. It might then
wait for a certain amount of time. But if no one provided it with one,
ultimately it might ignore the request. Meanwhile, the requestor might wait
awhile for confirmation, and then locate another to write the phone
number after waiting a predetermined period of time. The best strategy is
not always obvious or satisfying. Compromises do not always feel like
reasonable solutions—even if they are the best you can do under the
circumstances.

Design a Solution
So far, we have considered strategies for handling failures for a single
request. Making larger responsibilities more reliable can get much more
complex. Once you have identified a particular part of your design that you
want to make more reliable, think through all the cases that might cause
objects to veer off course. Start simply, then work up to more challenging
problems. Given the nature of design, not all acceptable solutions may
seem reasonable at first. You may need time for a solution to “soak in”
before it seems right.

Brainstorm exception conditions.
Complex software can fail in many, many ways. Even simple software can
have many places where things could go wrong. Thinking through all the
ways software might fail is difficult work. Make a list. Enumerate all the
exceptional conditions you can think of for a specific chunk of system
behavior. Whether you are working on your design in support of a use
case, or designing some collaboration deep inside your system, list
everything that you reasonably expect could go wrong. Consider:

 Users behaving incorrectly—entering misinformation or failing to
respond within a particular time

 Invalid information
 Unauthorized requests
 Invalid requests
 Untimely requests
 Time out waiting for a response

362 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

 Dropped communications
 Failures due to broken or jammed equipment, such as a printer

being unavailable
 Errors in data your software uses including corrupt log files, bad or

inconsistent data, missing files
 Critical performance failures or failure to accomplish some action

within a prescribed time limit
This list is intended to jog your thinking. But be reasonable. If some

condition seems highly improbable...leave it off your list. Put it on another
list (the list of exceptions you did not design for). If you know that certain
exceptions are common, say so. If you do not know whether an exception
might occur, put a question mark by it. You may not know what are
reasonable and expected conditions if you are building something for the
first time. People and software and physical resources can cause
exceptions, and the deeper you get into design and implementation, the
more exceptions you will find.

Limit your scope: pick a likely exception and resolve It.
Take exception design in bite-sized increments. If you have already
designed your objects to collaborate under normal conditions, start
modestly to make it more reliable. Pick a single exception that everyone
agrees is common enough and you think you know how it should be
handled. If you are designing collaborations for a specific use case, tackle
one “unhappy path” situation. What actions should occur when there are
insufficient funds when making an online payment? What if the user blinks
her eyes too rapidly and makes a false selection? What if the file is locked
by another application?

After you have decided on what seems a reasonable way to handle
that situation, design a solution using the object-oriented design
techniques already described. Minimize or purposefully ignore certain
parts of your design in order to concentrate on those objects that will take
exception, and those that will resolve it. You need not reach all the way
from the user interface to the lowest technical service objects. Here is
what we consider to be both in and out of scope for the exceptional case
of insufficient funds:

 Make A Payment—Insufficient Funds.
 Assume a well-formed request (no data entry errors).

 Wirfs-Brock: Handling Exceptional Conditions 363

 Ignore back-end system bottlenecks.
 Ignore momentary loss of connections or communication failures.

(They will be handled by connection objects in the technical service
layer.)

 Offer the user an opportunity to enter an alternate amount.

Determine who should detect an exception and how it should be resolved.
Assume that everything goes according to plan up to the point of where
the particular exception you are considering is detected.

We know the existing backend banking system returns an error
code indicating insufficient funds to our external interface
component. Now what?
The back-end banking component reports the exception via a
Result object to the FundsTransfer object that is responsible for
coordinating the transaction. The FundsTransfer interprets this as
an “unrecoverable exception” which causes it to halt and return a
Result (indicating failure) to the User Session.

Describe additional responsibilities of collaborators.
Objects that are service providers, controllers and coordinators are often
charged with exception handling responsibilities.

In the online banking application, the FundsTransferTransaction—a
service-provider/coordinator—coordinates the work of performing a
financial transaction. It makes relatively few decisions, only altering its
course when the result is in error. It is responsible for validating funds
transfer information, forwarding the request to the backend banking
interface component, logging successful transaction, and reporting results.

Objects within the application server component are within the same
trust region. They receive untrusted requests from the UI component and
collaborate with the backend banking component (each of those
collaborations span another trust boundary). The backend-banking
component interfaces to the backend banking system, a trusted external
system that either handles the request or reports an error. Occasionally,
communications between the backend bank system fail, and then our
software must take extraordinary measures.

Objects at the edges of a trust region can either take responsibility for
guaranteeing that incoming requests are well formed, or they can delegate
all or part of that responsibility.In the online banking application, any
incoming request from the user component is validated. The UserSession

364 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

object receives and validates requests from the UI component, then
creates and delegates the request to specific service providers. When a
request to transfer funds is received from the UI component, a
FundsTransferTransaction is created. It has responsibility for validating the
funds transfer information and reacting to errors reported from the
backend system.

As you work through exception handling scenarios assigning additional
responsibilities to collaborators, make sure you consider:

 Who validates information received from untrusted collaborators
 Who detects exceptions
 How exceptions are communicated between collaborators (via

raised exceptions or error results)
 Who recovers from them
 How recovery is accomplished
 Who recovers from failed attempts at recovery
 Who recasts exceptions, or translates them to higher levels of

abstraction

Record Exception Handling Policies
Once you have decided how to solve one exceptional condition, tackle
another. Often you can leverage earlier work. If you decide that “these type
of exceptions” are very similar to “those” ones, you will likely want to
handle them consistently. Write down general strategies you will attempt
to follow. Deciding on exception handling policies can save a lot of work:

System exception policies.

Recoverable software exceptions.
These are caught exceptions that do not necessarily mean an unstable
state in the software (corrupt message, time outs, etc.). The strategy to be
followed in these cases is to first log the exception and then try to handle it
(if retrying is likely to succeed). If not, raise the exception so it can be
handled (if the caller is within the same process); or to return an error (if
the caller is not within the same process).

 Wirfs-Brock: Handling Exceptional Conditions 365

Unrecoverable software exceptions.
These are caught exceptions that presumably can lead to an unstable
state, like running out of memory or a task being unresponsive. The
response in these cases is to log the cause of the exception and to restart
the application unless the severity there is a “hold&do not restart”
indication for that specific condition.

Document your exception handling designs.
You will likely want to beef up existing design documentation with
exception handling details, but do not pile on details. You can easily make
a collaboration story incomprehensible or a diagram illegible obscuring the
main storyline. Instead, draw new diagrams to show how specific
exceptions are handled. Leave existing diagrams alone. Any new diagram
will look nearly identical to the “normal” case, but will include additional
details about how an exception is detected, communicated and dealt with.

Your stakeholders and fellow designers will get a much better sense of
your exception design if you explain it. Describe what exceptions you
considered, how each is resolved, and what you consider to be out of
scope:

The online banking application is designed to cover
communications failures encountered during a financial
transaction. A full set of single-point failures was considered.
Some double-point failures were explicitly not considered, as they
are both unlikely and covering them adds undue complexity to the
processing of transactions.
In each case, the general strategy is to ensure that transaction
status is accurately reflected to the user. Failures in validating
information will cause the transaction to fail, whereas intermittent
communications to the external database or to the backend
banking system during the transaction will not cause a
transaction to fail.

In our opinion a picture is not necessarily worth a thousand words and
a thousand words does not always cut it either. If you can find a way to
explain concepts and design strategies using a combination of visual and
textual information, you will be a more effective communicator. Here is an
example showing key components and objects involved in performing a
“prototypical” online banking transaction. A table that explains what
exceptions can occur and their impacts on the user, accompanies it. Once

366 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

this multi-media explanation was created, how the software was designed
to react to exceptional conditions was easily communicated.

Table 1 Table 1 -- A table that explains online banki A table that explains online banking transaction exceptions and ng transaction exceptions and
the i r impac ts on the sys tem and i t s users .the i r impac ts on the sys tem and i t s users .

E x c e p t i o n o r E r r o rE x c e p t i o n o r E r r o r R e c o v e r y A c t i o nR e c o v e r y A c t i o n A f f e c t o n U s e rA f f e c t o n U s e r

Connection is dropped
between UI and Domain
Server after transaction
request is issued.

Transaction continues to
completion. Instead of notifying
user of status, transaction is just
logged. User will be notified of
recent (unviewed) transaction
results on next login.

User session is terminated…
user could have caused this by
closing his or her browser, or
the system could have failed.
User will be notified of
transaction status the next
time they access the system.

Failure to write results of
successful transaction to
domain server log.

Administrator is alerted via
console and email alerts.
Transaction information is
temporarily logged to alternative
source. If connections cannot be
re-established, the system
restricts users to “read only” and
account maintenance requests
until transaction logging is re-
established.

User can see an unlogged
transaction in transaction
history constructed from
backend banking query… but
will not have it embellished
with any notes he or she may
have entered.

Connection dropped between
domain server and backend
bank access layer after
request is issued.

Attempt to re-establish
connection. If this fails after a
configurable number of retries,
transaction results are logged as
“pending” and the user is
informed that the system is
momentarily unavailable…check
in later. When connections are re-
established, status is acquired
and logged. Further logins are
prevented until backend access is
re-established.

User will be logged off with a
notice that system is
temporarily unavailable and
will learn of transaction status
on next login.

Bac-kend banking request
fails.

Error condition reported to user.
Transaction fails. Failed
transaction is logged.

User receives error notification
but can continue using online
services.

 Wirfs-Brock: Handling Exceptional Conditions 367

Figure 8 Figure 8 -- A “high A “high -- level” sequence diagram showing a typical banking level” sequence diagram showing a typical banking
t ransact ion .t ransact ion .

Review Your Design for Holes
Even with best intentions, you cannot spot all the flaws in your work. Have
you ever had that “Aha!” about your own mistake while explaining
something to someone else? Simply talking about your design with
someone else helps you see things clearly. A fresh perspective will help
spot gaps in your design. The most common bugs in exception handling
design, according to Charles Howell and Gary Veccellio, who analyzed
several highly reliable systems, crop up when:

 Failing to consider additional exceptions that might arise when
writing exception handling logic. Do not let your guard down! Any
action performed when handling an exception could cause other
exceptions. Often the appropriate solution to this situation is to
raise new exceptions from within the exception handling code.

 Mapping error codes to exceptions. At different locations in your
design, various objects may have the responsibility to translate
between specific return code values to specific exceptions. The
most common source of error is to incompletely consider the range
of error codes—mapping some, and not all cases. Mapping is often

result

:MakePayment
TransactionUI :Session

performTransaction()
makePayment()

Legacy Server

prepareRequest()

submitRequest()

connect()

disconnect()

logResult()

submitRequest()

resultresult

368 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

required when different parts of a system are implemented in
different programming languages.

 Propagating exceptions to unprepared clients. Unhandled
exceptions will continue to propagate up the collaboration chain
until either they are handled by some catchall object, or left to the
run time environment. Designers usually want some graceful
exception reporting or recovery. If clients are not designed to
handle an unexpected exception, they will get program termination
instead.

 Thinking an exception has been handled when it has merely been
logged. Exception code should do something meaningful to get the
software back on track. As a first cut, you may implement a
common mechanism to log or report an exception. However, this
does not mean it has been handled. You have done nothing but
report the problem—which is only slightly more useful than taking
no action at all.

In addition to these potential sources of error, look for places where
complexity may have sneaked in:

 Redundant validation responsibilities. When you are not certain
who should take responsibility, sometimes you put it in several
places. There may be different levels of validation performed by
different objects in a collaboration—first checking that the
information is in the right format, next checking that it is consistent
with other information. It is OK to spread these responsibilities
between collaborators. But avoid two different objects performing
identical semantic checks.

 Unnecessary checks. If you are not sure whether some condition
should be checked, why not check anyway? Because it can
decrease system performance and give you a false sense of
security. This is an easy trap to fall into. By doing this, you have
done absolutely nothing to increase your software’s reliability and
are likely to confuse those who will maintain your design.

 Embellished recovery actions. Extra measures at first seem like a
good idea... but wait. Is it really necessary to retry a failed
operation, log it, and send email to the system administrator? Look
for where extra measures detract from system performance, make

 Wirfs-Brock: Handling Exceptional Conditions 369

your system more complex... and on a really bad day could clog up
someone’s inbox.

At the end of a review, you should be convinced that your exception
handling actions are reasonable, cost effective and are likely make a
difference in your system’s reliability.

Summary
As a first step in increasing reliability, you need to understand the
consequences of system failure. The more critical the consequences, the
more effort and energy is justified designing for reliability. To clarify your
thinking, distinguish between exceptions—unlikely conditions that your
software must handle—and errors. Errors are when things are wrong—bad
data, programming errors, logic errors, faulty hardware, broken devices.
Most software does not need to be designed to recover from errors, but
can be made more reliable by gracefully handling common exceptional
conditions.

Approaches for improving reliability are rarely cut and dried. The best
alternative is not always clear. To decide what appropriate reactions
should be taken involves sound engineering as well as consideration of
costs and impacts on the system’s users.

Objects do not work in isolation. To improve system reliability you must
improve how objects work in collaboration. Collaborations can be analyzed
for the degree of trust between collaborators. Within the same trust
boundary, objects can assume that exceptions will be detected and
reported, and that responsibilities for checking on conditions and
information will be carried out by the appropriately designated responsible
party. In some programming languages, exceptions can be declared. When
an exception is raised, some other object in the collaboration chain will
take responsibility for handling it. An alternative implementation technique
is to return values from calls that can encode exceptional conditions.

When collaborations span trust boundaries, more precautions may
need to be taken. Defensive collaborations—designing objects to take
precautions before and after calling on a collaborator—are expensive and
error prone. Not every object should be tasked with these responsibilities.
When you need to be very precise, define contracts between collaborators.
Bertrand Meyer (1997) uses contracts to specify the obligations and
benefits of the client and provider of a service. Spelling out these terms

370 Wirfs-Brock: Handling Exceptional Conditions

USEUSEforfor 2002200220022002USEUSEforfor 2002200220022002

makes it absolutely clear what each object’s responsibilities are in a given
collaboration.

Notes
This material is adapted from Object Design: Roles, Responsibilities and
Collaborations by Rebecca J Wirfs-Brock and Alan McKean, to be
published by Addison-Wesley, November 2002. Copyright Addison-Wesley
2003. Used with permission of the publisher.

References
Adams, D. (1993) Mostly Harmless (Hitchhiker’s Guide Series #5).

Random House.
Petroski, H. (1992) To Engineer is Human, Vintage Books.
Pye, D. (1978) The Nature and Aesthetics of Design. Van Nostrand

Reinhold Company.
Cockburn, A. (2002) Agile Software Development. Boston: Addison-Wesley.
Romanovsky, A., Dony, C., Lindskov Knudsen, J., and Tripathi, A., eds.

(2001) Advances in Exception Handling Techniques. Springer-Verlag.
Lea, D. (2000) Concurrent Programming in Java™ Second Edition: Design

Principles and Patterns. Boston: Addison-Wesley.
Meyer, B. (1997) Object-Oriented Software Construction. Prentice Hall.
Howell, C., and Veccellio, G. (2001) Experiences with error handling in

critical systems. In Romanovsky, A., Dony, C., Lindskov Knudsen, J.,
and Tripathi, A., eds. (2001) Advances in Exception Handling
Techniques. Springer-Verlag.

	Table of Contents
	Contributors

